ANALYSIS OF METHODS FOR DETECTING ANOMALOUS TRAFFIC IN IOT NETWORKS

Authors

  • Roman Marchenko
  • Andriy Kovalenko
  • Vasyl Znaidiuk

DOI:

https://doi.org/10.26906/SUNZ.2024.1.133

Keywords:

Internet of Things, anomalous traffic, machine learning, deep learning, statistical analysis

Abstract

The aim of this work is to conduct a comprehensive analysis of methods and approaches for anomaly detection in Internet of Things (IoT) networks. Considering the rapid development of IoT and the increasing number of connected devices, the problem of detecting anomalous traffic becomes crucial for ensuring the security and efficiency of these networks. This study examines various methods and approaches to anomaly detection, including statistical analysis, network monitoring, behavioral analysis, as well as the application of modern machine learning and deep learning technologies. Each of these methods is considered from the perspective of its applicability in the context of IoT and its advantages and limitations are evaluated. The work also explores current challenges and future prospects in the field of IoT security, with a focus on protection against cyber threats and the enhancement of anomaly detection systems.

Downloads

Download data is not yet available.

References

Parimala, V. K. (Ed.). (2024). Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications.IntechOpen.DOI: 10.5772/intechopen.110988. ISBN: 978-1-83769-027-5.

Коваленко А. А., Кучук Г. А. Методи синтезу інформаційної та технічної структур системи управління об’єктом критичного застосування. Сучасні інформаційні системи. 2018. Т. 2, № 1. С. 22–27. DOI: https://doi.org/10.20998/2522-9052.2018.1.04

Ruban, I.V., Martovytskyi, V.O., Kovalenko, A.A. and Lukova-Chuiko, N.V. (2019), “Identification in Informative Systems on the Basis of Users' Behaviour”, Proceedings of the International Conference on Advanced Optoelectronics and Lasers, CAOL 2019-September,9019446, pp. 574-577, DOI: https://doi.org/10.1109/CAOL46282.2019.9019446

Kovalenko, A., Kuchuk, H., Kuchuk, N. and Kostolny, J. (2021), “Horizontal scaling method for a hyperconverged network”, 2021 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, doi:https://doi.org/10.1109/IDT52577.2021.9497534

Kuchuk, N., Kovalenko, A., Ruban, I., Shyshatskyi, A., Zakovorotnyi, O. And Sheviakov, I. (2023), “Traffic Modeling for the Industrial Internet of NanoThings”, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2023 - Conference Proceedings, 194480, doi: http://dx.doi.org/10.1109/KhPIWeek61412.2023.10312856

Li, H., Boulanger, P. A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG). Sensors. 2020; 20(5): 1461. DOI: 10.3390/s20051461.

Cook, A. A., Mısırlı, G., & Fan, Z. (2020). Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet of Things Journal, 7(7), 6481–6494.

M. Fahim, A. Sillitti, Anomaly detection, analysis and prediction techniques in IoT environment: A systematic literature review, IEEE Access 7 (2019) 81664–81681

Chatterjee, A., & Ahmed, B. S. (2022). IoT Anomaly Detection Methods and Applications: A Survey. Internet of Things, 100568. Elsevier BV.

Published

2024-02-09

Most read articles by the same author(s)