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PACKING HOMOTHETIC SPHEROIDS
INTO A LARGER SPHEROID WITH THE JUMP ALGORITHM

The article considers a mathematical model of the optimization problem of packing homotethic spheroids
(spheres - in particular case) into a larger spheroid (sphere - in particular case). Sphere radii are supposed to be
variable. A new algorithm to derive starting points belonging to the feasible region of the problem is offered.
According to the jump algorithm solving the problem is reduced to solving a sequence of mathematical
programming problems yielding objective improvements. A solution strategy consisting of four stages is proposed.
The first stage involves formation of starting points and computation of local minima. The second stage fulfills
continuous transition from one local minimum to another. The third stage realizes reduction of the solution space
dimension. The fourth stage rearranges sphere pairs to refine the objective. We provide a number of numerical

results both for spheres and spheroids.
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Introduction

Problems of packing unequal spheres and sphe-
roids have applications in medicine and biology.

Medical applications of the unequal sphere pack-
ing problem in radiosurgery are studied in [1-3]. The
gamma-rays are focused on a common center, creating a
spherical volume of high radiation dose. A key geomet-
ric problem in gamma knife treatment planning is to fit
balls into a 3D irregular-shaped tumor. In this situation,
overlapping balls may cause overdose, and a low pack-
ing density may result in underdose and a non-uniform
dose distribution.

In biological sciences, the study of chromosome
arrangements and their functional implications is an
area of great current interest [4]. The territory occupied
by each chromosome can be modeled as an spheroid,
different chromosomes giving rise to spheroids of dif-
ferent size. The enclosing spheroid represents a cell
nucleus, the size and shape of which differs across cell
types. Overlap between chromosome territories has
biological significance: it allows for interaction and co-
regulation of different genes.

Sutou and Day [3] propose a global optimization
approach to unequal sphere packing problems. The
optimization problem is formulated as a nonconvex
optimization problem with quadratic constraints and a
linear objective function. Paper [5] offers a mathemati-
cal optimization method for packing unequal spheres
into a cuboid based on the decremental neighborhood
method and a local optimization method. An algorithm
to pack unequal spheres in a larger sphere using tabu
search, the quasi-human basin-hopping strategy and the
Broyden—Fletcher—Goldfarb—-Shanno method is devel-
oped in [6]. A set of examples are calculated.

In this paper, we adopt the jump algorithm (JA)
developed for unequal circle packing [7] to pack un-

equal sphere in a sphere of minimal radius. JA allows to
transit from one local minimum point to another one so
that the larger sphere radius decreases.
First we consider the packing problem of spheres.
All given spheres

3 2 2 2 22
Si=1{vi eRT:(x=x)"+(y-y)) " +(z-7) - <0}
where v; = (X;,y;,z;) are center coordinates of §;,
iel={l1,2,..,n}, have to be packed into a sphere

S = {(x,y,z)eR3 . x? +y2 +z2 -R? <0},

We asume that the radius R (R > rAl ,1el)of
S is variable.
A sphere S; translated by a vector v; and a sphere

S with variable size R are denoted by S;(v;) and

S(R) respectively. A vector v = (vq,Vy,...,V,) € R"
defines an arrangament of S;, i € I, in the Euclidean 3-

D space R>.

Without loss of generality, we suppose that

< <..Sh,0<T,. (1)

Then we consider the packing problem of
spheroids.

Each homothetic spheroid E;(v;), 1 € I, is gener-
ated by rotation of an ellipse of semi-axes a; and b,
a; > b;, along the axis of revolution OX, therefore we
assume that third semi-axe is defined as c¢; = b; and
v; = (X;,¥;,z;) 1s a translation vector. All spheroids
have to be packed into an spheroid

2 2 2

E={(x,y,z eR3:X—+y—+Z——1£0,
(5.2 "A AB  AC J

where A, B, C is semi-axes of container and A is a
coefficient of homothety.
Problem. Find a vector v ensuring a packing of

spheres S;(v;), i€, (spheroides E;(v;)) without
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their mutual overlappings within the sphere S of the
minimal radius R
coefficient of homothety A*).

(spheroid E with the minimal

Mathematical model

A mathematical model of the problem can be
stated as
Wo=minp, st Y=@@v)e Wc R™ (2
where
W=1{Y e R 1 d;(vi,v)20,0<i<jel
O;(v{,R)20,1€1},
{R in the case of sphere packing,

€)

A in the case of ellipsoids packing.
2 2
Here O;(vi,vi) = (X —x))" +(y; —yj)" +

+(z;

— zj)2 -(r + I, )2 >0 ensures non-overlapping

spheres S; and S i D (v{;R) 20 provides a
S;(vi) S(R)
(Di(Vi,R) =—X; - yi2 - Zi2 + (R - I,'i\i)2 . The condi-
tion of non-overlapping homotetic spheroids is

2 2 2
x;=x)"  (yj-y)"  (z;-7)

+

(bi + b_l )2

and the condition of placement spheroid E;(v;), i €1,

placement  of within and

2

Dj(vi, vj) = -1

(a; +a;)° (c; +¢j)°
in container E(A) is

> W @
(A -2a)> (B-b)> (AC-c)?

if spheroids E;, i € I, and E are homothetic.

@;(vi,A) =1-

The mathematical model (2)+3) possesses the same
characteristics as that of the mathematical models
considered in [8], i.e. local minima are reached at extreme
points of W , the matrix of the inequality system in (3) is
strongly sparse, the problem stated is NP-hard. Thus, in
general, a global minimum of the problem can be reached
but only in a theoretical manner.

Consequently, for successfully solving problem
(2)—(3) it needs to be able to construct starting points
belonging to the feasible region W, to compute local
minima and to derive an effective non-exhaustive search
for local minima.

In what follows we consider the sphere packing.
One may consider homothetic spheroids instead of
spheres by replacing spheres S; by spheroids E;,i €1,
and radius R by coefficient of homothety A .

Generating starting points
and searching for local minima

Primarily, we suppose that radii r; of spheres S;,

iel, are variables and form a  vector

r=(f,5,...1,) € R". In the case, the inequalities in

system (3) take the form

cDij(Vi’Vj’ri!rj) 2 03 0<i< _] € Is q)i(vi9ria

Thus, X = (v,r) € R*" is the vector of all variables.

Let R =R? > 0. We form a point X0 = (VO,O)
so that V? IS P(RO), i€, i.e. points V? IS R3, iel,
are randomly thrown in the sphere P(RO) .

In order to construct a point (V,RO) € W on the

ground of the point (V0 , RO) we solve the problem

n
W(r) = max Y 1, st X = (v,;) e D R*™, (4)
i=1
where

D ={XeR" :®;(v;,v,5,1,) 20, 0<i<jel )
O (v, 1, RY) 2 0,5(5) =1 -1, 20,1, 20, i e T}.

It follows from the construction of X° that
X’ eD. So taking starting point X% we tackle
problem (4)—(5) and obtain a local maximal point
X = (v,T). Note that in addition to the characteristics

of problem (2)—(3), problem (4)—(5) possesses the
properties:
(1) Inequalities ¢;(r;) = 0, 1 € I, in (5) imply that if

then T =7 and spheres S;, iel, are packed into
S(RO). This means the point X is a global maximal
point of problem (4)—(5).

(ii) If ¥(T) < b, and X is a global maximal point
of problem (4)—(5), then spheres S;, i1, can not be
packed into P(RO).

Depending on R two cases can be found:

i. ¥(r) =b andii. ¥(r) <b.

It follows from item (i) that (v,R®)e W if
Y(r) = b. The point (?/,RO) is not in the general case
a local minimal point of problem (2)—(3). So, taking
starting point (Q,RO) we calculate a local minimal
(V,R) of problem (2)~(3)

interaction of the placed spheres.
Let WY(r)<b. Then we

point regarding the

either choose

X0 = (VO,O) in a random way again and solve
sequentially problems (4)—(5) and (2)—(3) or try to
execute a transition from X to X so that

¥(r) > P(1).

Solution strategy

To compute a local minimum of problem (2)—(3)
we derive a step by step procedure that includes tackling
problems (2)—(3) and (4)—(5).
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Primarily, we choose R = R’ guaranteeing an
arrangement of spheres S; of radii a , 1e€l, into the

sphere S(RO). Then we take a point X0 = (VO,O) in a
0

random way so that v; € S(RO), iel, and, using

starting point x° , solve problem (4)—(5). As a result, a
local maximal point X = (v,7) is found. Because of

the choice R =R? we always have W(r) =b, i..
T=r = (rAl,rAz,...,a). This means that (v,R%) e W.
So, taking a starting point (V, },LO), we solve problem

(2)—(3) and calculate a local minimal point ({/0, }io) .
The jump algorithm (JA) permits to execute a

continuous transition from a local maximal point of

problem (4)—(5) to another one ensuring an increase of

¥(r). Let X = (v,T) be a local maximal point of the
n

problem (4)~(5) and W(r) = ) & <b, i.e. at least one
i=1

of the inequalities t, — > 0, i eI, is not active. We

formulate the auxiliary problem

n
max V(r) = er, st. X e M c R*",

(6)
i=1
M = {X e R*: &;(v;,vj,5,15) 20, 0<i<jel
O; (vi, i, R 2 0, yyi(§) = tpay — 5,20, (D)
Y2i (1) = ~Tip + 5 20, 1€ I},
where 1, = max{f;, iel} and 1, = min{fi\, iel}.

Now, let (V/O,Iio) be a local minimal point of
problem (2)—(3). We compute

~

A 1+2
i =i-Q) or;

—E (=052, ieLA=0,,..

and assume that sphere radii are equal to ri)‘, iel
Then problem (2)—(3) takes the form
R = minR st. Y = (v,R) € W* < R*"*,

W = (Y e R @k (v, vi) 2 0,

®)

where
O<i<j€LCDi)L(Vi,R)ZO,ieI},

A _ 2 A2

oty =l -off - 4117

A 2 2 2 N2

O (vi, ) ==x;" —-y;" -z +(R-1")".

i <3

(VO,IiO) e W* and (V/O,Iio) is not a local minimal

Since iel, then the point

point of problem (8). So, taking starting point (V/O, Iio) ,
we solve problem (12) and define a local minimal point
(\:/O,Iio). Since Zin:]ri}‘ < b, then, tackling problem
(4)—(5) for starting point X = (%/(),r)L )eD, we

compute a local maximal point X = (\7)L ,?)‘ ). Two

cases are possible: ‘I’(?)‘) =b and ‘I’(?)‘) <b. If

¥(i*)=b, then T

: and hence

= f; , 1el,
(?/)‘,1:10) € W. Since the solution spaces of problems
(2)~(3) and (4)<(5) are different, then (v*,R) in
general is not a local minimal point of problem (2)—(3).
So, taking starting point (?/)‘,1:10), we solve problem
(2)~(3). As a result, a new local minimum point
(\7] , Iil) is computed. In this case a local minimal point
(\:/],1:11) of problem (8) for the starting point (\7] , ;1]) is
computed again, and so on until ‘I’(?)‘) < b becomes,
ie. we have Zin:] *<b, X'= (\7)‘,?)‘) and
(?/)‘,}1)”) ¢ W after A iterations.

In this situation (‘I’(?)‘) <b) we compute the

steepest ascent vector 7" at the point X" for problem

(6)~«(7), define y=m, construct a point
X" =w",r")eD according to (8) and the
ascending sequence (see (1))
<™ <™, )
1 12 In
Since V(r™) > V(¥) may occur, then, making use
of sequence (9), we compute rir?“o = min{ri’?“,l?-}, jel
j ]
This ensures the inequality V(rmo) < V() where
M0 = (0 0 rM0)  Based on sequence (9), we
construct two points: X™ = (¥™,f™)  where
\7}“ =vm, = jel, and point
lj ] lj
XM = (™M) where v = v, BM =", jel.
j j

If V@) > V(E™) > V(t"), then the new steepest
ascent vector Z° at the point X™ for problem (6)—(7)
is calculated. Taking X = X™, we build a new point
XM =X+(1/2)™Z° and construct new points
Xm = (™, ™) and X™ = (¥™,f™) in accordance
with sequence (13), and so on. The iterative process is
continued  until  either VE™) = V(@)
V(E™) < V() < V(@) occurs.

If VE™) = V@), ie " =2

or

i € I, then taking
starting point (\Nlim,lu{)‘) , we tackle problem (2)—(3) and
calculate a new local minimal point (VO,}iO). The
process is repeated until V(™)< V(?)‘) < V(@)
becomes.

Reduction of the solution space dimension is

realized by means of sequencial fixing initial values of
sphere radii without fixing their center coordinates.
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To the aim we take the point X™ , single out

i">2,iel cl, and calculate

§' =4/3 - max{@i) - ), iel}.
Let &' correspond to radius % . Hence, 8" is an

increment of volume of the sphere S; when varying its

radius from 1, to ™. This means that if r, = r, , then
there is a volume reserve around the sphere S; . In order
to use the reserve we fix radius r, = % and derive a point
XMl @ Em i A LB e R e 1
is no longer a variable and, hence, the dimension of the
solution spaces D and M decreases by 1. Then, taking
starting point X™ we realize JA in the space R If

“ml ~
V™ =v@d =>" 1),
then we take starting point (\Nliml,lv{)‘), tackle problem
(2)—(3) and calculate a new local minimal point

(VO,}V{O) f V(1:rm1) < V(¥), we continue to reduce the
solution space dimension. If V(1:rm1) < V(¥ and all

spheres S;, i € I' I, are exhausted, we increase A by
1 and realize JA again. The process is continued until
(1/22r <giel.

After that we take the local minimal point (VO, }v{o)
of problem (2)—(3) and rearrange sphere pairs whose radii
are slightly distinguished. This allow to improve the
objective value of problem (2)—«(3). An algorithm
executing such rearrangements is described in [9]. In
order to obtain a good approximation to a global
minimum of problem (2)—(3) we repeat the step-by-step
procedure consisting of the construction of a starting
point and the search for a local minimum of problem (2)—
(3) with JA v times. As a result local minimum points

(v, R™), teT={1,2,...v <10} are computed.

Then we single out a local minimal point
v**,R**) corresponding to R*® = min{R*,t e T}.
The point (V*O, R*O) is taken as an approximation to a
global minimum of problem (2)—(3).

Numerical examples

In order to verify effectiveness of JA, we solve the
benchmark instances for packing spheres into a sphere
considered in [6]. Moreover, we solve examples for
packing spheroids.

We compare results of packing spheres r =1,

i=12,...,n, into a larger sphere calculated by the algo-

rithm [6] and JA. In Table 1, the first and the second
column give example names and numbers of spheres to
be packed. The third and the forth column summarize the
best values of radii obtained in [6] (Ry) and with JA

(R*O ). The percentage of improvement of JA against the

best known results is shown in the last column. The cal-

culation time by means of JA varied from 10 seconds to
12 hours depending on the number of spheres.

Table 1

Results of packing spheres of radii ; =1 into a sphere

Example n Ry R improve
ZHXF16 16 33.6582 33.6572 0
ZHXF17 17 36.2030 36.2021 0
ZHXF18 18 38.8463 38.8467 -0
ZHXF19 19 41.5452 41.5462 -0
ZHXF20 20 44.2737 44.2557 0.04
ZHXF21 21 47.0342 47.0332 0
ZHXF22 22 49.9068 49.8666 0.08
ZHXF23 23 52.8368 52.7425 0.18
ZHXF24 24 55.7546 55.5782 0.32
ZHXF25 25 58.4684 58.4665 0
ZHXF26 26 61.4745 61.3883 0.14
ZHXF27 27 64.4854 64.4141 0.11
ZHXF28 28 67.4837 67.4173 0.1
ZHXF29 29 70.5257 70.3911 0.19
ZHXF30 30 73.4813 73.3704 0.15
ZHXF31 31 76.5336 76.5057 0.04
ZHXF32 32 79.8018 79.6075 0.24
ZHXF33 33 83.1967 82.8314 0.44
ZHXF34 34 86.2430 85.9206 0.37
ZHXF35 35 89.3454 89.1536 0.21
ZHXF40 40 - 105.6146 -
ZHXF50 50 - 140.7613 -
ZHXF60 60 - 178.1920 -
ZHXF70 70 - 217.0801 -
ZHXF80 80 - 258.4230 -
ZHXF90 90 - 300.9910 -
ZHXF100 100 - 345.5416 -

Illustration for ZHXF33 is shown in fig. 1.

Fig. 1. Example ZHXF33

We provide results of packing homothetic spheroids
(spheroids) E;, i € I, into a spheroid. For n =15 sphe-

roids A" = 0.22659 and sizes (A",B",C") =(16.9948,
5.6649, 5.6649). In case n = 20 A" =0.321 and sizes
(A",B",C") =(39.0005, 13.0002, 13.0002). For n = 30
ellipses A =0.1421 sizes (A*,B*,C*) =
=(21.3155,7.10516,7.10516). A" =0.4578 and sizes
(A",B",C") =(160, 55, 55) for n = 50 spheroids.

and
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[llustration for example of packing 15(30) spheroids
is shown in fig. 2. The Interior Point Optimizer (IPOPT)
exploiting information on Jacobians and Hessians [10], and
the concept of ¢ -active inequalities [8,11] are used when
tackling problems (2)~3), (4)~«5) and (6)«7).

Fig. 2. Examples of packing 15 and 30 spheroids

Conclusion

Algorithm JA is effective to solve the sphere and
homothetic spheroids packing problems and improves
known results for benchmark.

The algorithm is especially effective if neighbor
initial radii of spheres (half-axes of spheroids) in the
sequence (1) are slightly distinguished.

A decrease of the problem dimension by means of
sequential fixing sphere radius values sometimes permits
to improve the objective values of problem (2)—3).

The algorithm can be adopted to solve the problem
of packing spheres and homothetic spheroids in
containers of more compex geometric shapes.
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Penensent: n-p TexH. Hayk, npod. I.B. I'pebennik, Xapkis-
CbKUI HalliOHAJIbHUI YHIBEPCUTET PaiOeIeKTPOHIKH, XapKiB.

YNAKOBKA FTOMOTETUYHUX COEPOIAIB Y BINbLLOMY COEPOIAI
3A OOMNOMOIroto AIITOPUTMY CTPUBKA (JUMP ALGORITHM)

O.M. Xnyn, I' M. ScbkoB

Y cmammi poszensdacmocs mamemamuuna mooens 3a0ayi ONMUMANTLHOI YNAKOGKU 20MOMemudHux cgepoioie (cep y
KOHKpemHoMy 6unaoxy) Oinvuiuti cgepoio (cgpepa y xonkpemmomy e6unaoky). Padiycu cghep marome Oymu 3minnumu.
3anpononosano HoGI ancopumm 3HAXOOJICEHHS CMAPMOSUX MOYOK, WO Hanexcamv obaacmi Oonycmumux 3Hayenv. 3
BUKOPUCIIAHHAM ATROPUMMH CIMPUOKA, SUPIUIEHHS 3a0a4i 3600UMbCsl 00 PO36 A3aHHS NOCTIO0BHOCHE 3a0aY MAMEMAMUYHO20
npocpamysanis, wo oac 06'ckmughi nokpawenns. 3anpononosana cmpamezis po3g a3anHs CKIA0emvCs ¢ YOMUpPbox emanis.
Ilepwuii eman @KmOUAE GOPMYBAHHS CIMAPMOBUX MOYOK MA OOYUCTEHHS JIOKATbHO20 Minimymy. Ii0 uac opyeoeo emany
BUKOMYIOMbCsL De3nepepeHill nepexio 6i0 00HO20 N0KANbHO2O Minimymy Oo inwioco. Ha mpemwvomy emani 6i0bysacmucs
3Menuents posmipHocmi npocmopy piwenns. Ha wemeepmomy emani napu cghep nepe6yoosyromucs, wob ompumamu 3a0ati.
Mu npugooumo pesyromamu yucenbHux ekcnepumenmis ons cgep ma cgepoiois.

Knrouogi cnosa: ynaxoska, kyas, cgepoio, onmumizayis, aneopumm cmpuoka.

YMNAKOBKA TOMOTETUYHbLIX COEPOMNOOB B BOJIbLUEM COEPOUOE
C NMOMOLLbIO ANNTOPUTMA MPbIXKA (JUMP ALGORITHM)

O.H. Xunyn, I'.H. fIcbkoB

B cmamve paccmampugaemcs mamemamuieckas MoOenb 3a0ayu ONMUMANbHOU YNAKOSKU 2OMOMEMUYHbIX Chepoudos
(cipep 6 konkpemmnom cuyuae) bonvuie cghepoud (cghepa 6 Konkpemnom cayuae). Paouycol cgpep 0ondicnvl Obimsb nepemeHHbIMU.
IIpeonooiceno HOBOU aneOpUMM HAXOJICOEHUSI CMAPMOBLIX MOYEK, NpuHaonexcawux obracmu donycmumvlx 3navenul. C
UCNONB306AHUEM AN2OPUMMA CKAYKA, peuierue 3a0auu c6OOUMCs K peuieHulo nocie008amenbHOCIU 3a0ay MamemMamuyeckoeo
npocpaMmuposanus, oaem 00vbeKmugHvle yayyuienus. IIpednodcennas cmpamezus peuieHue CIOICUMCA ¢ Hemblpex dManos.
Ilepesuiii sman exmoyaem opmuposaniie cmapmogbix Mmoyex u Gbl4UCIeHUs TOKATbHO20 MuHumMyma. Bo epems emopoeo smana
BbINONHAIOMCS. HENPEPBIGHOU Nepexo0 Om 00HO20 NOKANbHO20 MuHumyma 6 opyeou. Ha mpemvem smane npoucxooum
YMeHbuleHe pazmepHocmu npocmpancmea peuienus. Ha wemeepmom amane napwl chpep nepecmpaugaiomcs, 4moosl NOLy4ums
3a0annvie. Mol npuooum pe3yibmanivl MHO2OYUCIEHHBIX IKCNEPUMEHMO8 OISl chep u cdhepoudos.

Knrouesvie cnosa: ynaxoska, wiap, cgpepoud, onmumuzayus, aneopumm npolickd.
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