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Abstract .  This research addresses the challenge of fault detection in industrial equipment using high-dimensional vibration 

data with limited labeled examples. The goal was to develop a neural network model capable of accurately classifying 

measurement vectors into normal and faulty categories. The dataset consisted of 1158 samples, each with 93,752 numerical 

features, representing two classes: 865 normal and 293 faulty instances. A comprehensive preprocessing pipeline was 

employed, including standardization, dimensionality reduction using Principal Component Analysis (PCA), and Synthetic 

Minority Over-sampling Technique (SMOTE) for class balancing. The developed neural network achieved a baseline 

accuracy of 94.40% with 100 PCA components. Further experiments demonstrated that reducing the architecture and using 

only 50 PCA components improved accuracy to 98.81%, highlighting the effectiveness of the proposed approach. These 

findings emphasize the utility of combining PCA, SMOTE, and neural networks for fault detection in industrial equipment 

in high-dimensional, imbalanced datasets. Future research directions include exploring advanced neural network 

architectures, investigating the impact of PCA component count on model performance, and studying the feasibility of 

training effective models on synthetic data. 
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Introduction 

Ensuring the reliability of mechanical systems is a 

critical task in modern industrial environments. 

Equipment failures can cause severe disruptions, leading 

to costly repairs, operational delays, and, in some cases, 

serious safety risks. As a result, early detection of faults 

becomes an essential component of preventive 

maintenance strategies. Machine learning (ML) became 

a key tool in automating the fault detection process, 

enabling fast and accurate identification of potential 

issues. However, many traditional ML models require 

large labeled datasets, which are often difficult to obtain 

in real-world scenarios. 

The object of study in this paper is the process of 

building the neural network (NN) model to classify the 

probable faults of equipment through the analysis of 

vibration data. Building and training of the model 

requires time and computational resources as well as the 

construction of the effective architecture of the model 

that could solve the problem.  Additionally, this process 

is data-dependent and should utilize methods to address 

the unequal distribution of classes and data scarcity. 

The goal of the work is to develop a robust fault 

detection model that can accurately identify both nominal 

and faulty instances in the equipment's operational data.  

Related work 

Fault detection in complex systems is a critical area 

of research, particularly in industries where early 

identification of equipment malfunction is essential for 

preventing costly breakdowns and ensuring operational 

safety. Traditional machine learning techniques are 

commonly applied in this field, yet they often face 

significant challenges, such as handling high-

dimensional data and imbalanced class distributions. The 

dataset used in this study contains 1158 files, each 

containing over 93,000 features—exemplifies a such 

scenario in industrial monitoring, where large amounts of 

sensor data are collected for fault detection. 

High-dimensional data, such as the dataset 

representatives in this research, present several 

computational challenges, including overfitting and 

increased computational costs. Moreover, when working 

with neural networks, the risk of the “curse of 

dimensionality” arises, which can affect model 

performance by diluting the significance of individual 

features. To address this, principal component analysis 

(PCA) is commonly used as a dimensionality reduction 

technique. PCA transforms the high-dimensional data 

into a lower-dimensional space by extracting the most 

important features, or principal components, that explain 

the largest amount of variance in the dataset. PCA has 

been widely validated in the literature as an effective way 

to reduce computational complexity while retaining the 

most relevant information, enabling more efficient 

training of machine learning models, including neural 

networks [1 – 3]. 

The unequal class distribution is a common issue in 

fault detection problems, as there are significantly fewer 

instances of faulty data (class 1) compared to normal 

operation data (class 0). This distribution can skew model 

predictions, making it more likely to favor the majority 

class (class 0). The synthetic minority over-sampling 

technique (SMOTE) [2] was employed to address this. 

SMOTE generates synthetic samples from the minority 

class by interpolating between existing examples, 

effectively balancing the dataset. By providing a 

balanced dataset, SMOTE helps ensure that the model is 

able to detect faults as effectively as it recognizes normal 

operating conditions. Previous studies have 

demonstrated the usefulness of SMOTE in addressing 

class imbalance, especially in industrial fault detection 

scenarios where faulty conditions are rare [4, 5]. 
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The implementation of neural network model used 

in this study was built using the Keras framework [6, 7]. 

The model architecture consists of three fully connected 

layers, each followed by Leaky ReLU activation 

functions. Leaky ReLU was chosen over the standard 

ReLU to prevent the issue of “dying neurons,” where 

neurons stop updating during training. Dropout layers 

were applied after each dense layer to prevent overfitting 

by randomly deactivating a portion of neurons during 

training. Dropout is a well-known regularization 

technique used to improve model generalization by 

preventing overfitting to the training data [8, 9]. 

The final layer of the network uses a sigmoid 

activation function, which is suitable for binary 

classification problems, distinguishing between nominal 

(non-faulty) and faulty data. Adam optimizer [10] was 

used which in an adaptive learning rate optimization 

algorithm that has been shown to achieve better 

performance on deep learning tasks due to its ability to 

adjust learning rates for each parameter dynamically. 

Binary cross-entropy was used as the loss function, 

which is standard for binary classification tasks. 

Additionally, early stopping was employed during 

training to prevent overfitting.  

While other techniques such as prototype selection 

and construction methods have been applied to reduce 

dataset size and improve model performance, they are 

often computationally expensive and risk discarding 

important information. Prototype selection methods 

focus on identifying the most relevant instances from the 

dataset, whereas prototype construction generates new 

instances to represent the data more effectively. 

However, these approaches often face limitations in 

terms of processing time and accuracy, especially in 

high-dimensional datasets like the one used in this 

research. Instead, the combination of PCA and SMOTE 

provides a more efficient solution for managing the large 

dataset while retaining critical information necessary for 

fault detection [11, 12]. 

Prototype selection methods focus on identifying a 

representative subset of data points from the entire 

dataset. These methods aim to choose the most relevant 

instances avoiding redundancy and noise. However, in 

fault detection tasks, where there is a significant 

difference in the number of samples between classes 

(with fewer faulty samples compared to normal ones), 

traditional prototype selection techniques often face 

challenges. While these methods can help reduce 

dimensionality, they might not effectively address the 

issue of unequal class distribution. In this paper, the 

SMOTE was applied to mitigate this by generating 

synthetic samples, ensuring that the fault detection neural 

network model receives a balanced set of examples for 

training. 

Conversely, prototype construction methods [12] 

focus on generating new samples that represent the 

underlying structure of the data. These methods employ 

clustering techniques or neural networks to create 

synthetic prototypes. While prototype construction can 

address some issues with the unequal distribution of 

classes, it may also introduce complexity and noise. PCA 

was utilized in this paper to perform dimensionality 

reduction, effectively capturing the main variance of the 

dataset while eliminating redundancy. This 

preprocessing step enhanced memory usage (and, 

probably, model efficiency) by reducing the 

dimensionality of the vector from over 93,000 

dimensions to 100. 

Both prototype selection and construction methods 

come with trade-offs, especially in high-dimensional 

datasets like this. A significant drawback of these 

methods is the high computational cost involved in 

processing involved in large datasets processing the 

potential introduction of noise through synthetic sample 

generation. For our case, the leveraging PCA helped 

alleviate these challenges by preserving the dataset's core 

features, while SMOTE effectively handled class 

imbalance without the need for complex prototype 

construction methods. 

The model building pipeline  

In this paper, the traditional prototype selection and 

construction techniques were not directly implemented, 

as SMOTE and PCA provided a more efficient solution 

for high-dimensional fault detection datasets with 

unequal class distribution. This combined approach 

significantly improved the model's ability to generalize, 

effectively addressing both dimensionality and the 

challenge of having fewer faulty data samples (class 1) 

compared to normal data (class 0). 

Data Preprocessing. To prepare the data for 

analysis, the first step involved the standardizing dataset. 

This was accomplished using the StandardScaler from the 

scikit-learn library, which transforms the data so that each 

feature has a mean of zero and a standard deviation of one. 

The standardization formula can be expressed as (1): 

 𝑥′ = (𝑥 −  𝜑) 𝜎⁄ , (1) 

where x′ is the standardized value of feature x after 

normalization, μ – mean of the feature values, σ – 

standard deviation of the feature values. 

Dimensionality Reduction. Given the high 

dimensionality of the vibration data, PCA was applied to 

reduce the number of features. It helps to retain the most 

significant variance in the data while minimizing the 

number of dimensions. The transformation can be 

described by the following equation (2): 

 𝑍 = 𝑋𝑊, (2) 

where Z is matrix representation of data after 

dimensionality reduction, X is the original feature matrix, 

W – weight matrix for the transformation in 

dimensionality reduction. 

Data Balancing. Data Balancing. SMOTE 

generates synthetic examples for the minority class to 

create a more balanced dataset. The new synthetic 

instances are created by interpolating between existing 

instances of the minority class (3): 

 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑗 − 𝑥𝑖), (3) 

where xnew is new synthetic instance generated by 

SMOTE, xi is the existing instance from the minority 

class, xj is the other instance from the minority class for 

interpolation, and λ is the interpolation factor for 

generating synthetic instances. 
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Neural Network Architecture. Three hidden 

layers utilize the LeakyReLU activation function, which 

allows small gradients for inactive neurons. The 

LeakyReLU activation can be expressed as (4): 

 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑖𝑓 𝑥 > 0;

𝑎𝑥 𝑖𝑓 𝑥 ≤  0,
 (4) 

where a is the small constant slope, typically set to 0.1. 

Dropout layers are applied after each hidden layer 

to mitigate overfitting by randomly setting 25% of the 

neurons to zero during training. The output layer consists 

of a single neuron with a sigmoid activation function for 

binary classification (5): 

 𝑦 =
1

1+𝑒−𝑧 , (5) 

where z is the input to the sigmoid function, and y is the 

predicted output of the model after applying the sigmoid 

function. 

The model was trained using the Adam optimizer 

and binary cross-entropy as the loss function (6):    

𝐿(𝑦, �̂�) = −
1

𝑁
∑ (

𝑦𝑖𝑙𝑜𝑔(�̂�𝑖) +

+(1 + 𝑦𝑖)𝑙𝑜𝑔(1 − �̂�1)
) ,𝑁

𝑖=1        (6) 

where L is the loss function, calculated using binary 

cross-entropy, N is the total number of instances in the 

dataset, yi is the actual class label for the i-th instance, 

and �̂�i is the predicted probability for the i-th instance, 

representing the model's confidence that the instance 

belongs to the positive class. 

Early stopping was implemented to monitor the 

validation loss and prevent overfitting. 

The performance of the model was rigorously 

evaluated on the test dataset, focusing on metrics such as 

accuracy and loss. The training process was monitored 

across a specified number of epochs with a batch size of 

32, ensuring efficient use of computational resources 

while tracking the total training time. 

Data preprocessing  

In this paper, various methods were employed to 

develop an effective fault detection model. The primaкy 

focus was on the use of vibration data collected from 

mechanical systems.  

To ensure uniformity across the dataset, the data 

was standardized using the StandardScaler from the 

sklearn.preprocessing module. This normalization is 

crucial for optimizing the performance of the machine 

learning model. Given the large number of features, PCA 

was applied to reduce the dimensionality of the dataset. 

The number of principal components was set to 100, 

significantly reducing computational complexity while 

retaining essential variance in the data.  

The dataset was then split into training and testing 

sets using train_test_split from sklearn.model_selection, 

with 80% allocated for training and 20% for testing. To 

address class imbalance—where faulty samples were 

significantly fewer than nominal ones—the SMOTE was 

utilized to generate synthetic samples for the minority 

class. This step was essential to ensure the model trained 

effectively on a balanced dataset. 

The architecture of the neural network includes 

three layers. The first one contained 512 units, the second 

layer had 256 units, and the third layer included 128 

units. Each layer employed the LeakyReLU activation 

function to prevent inactive neurons, with a dropout rate 

of 0.25 applied to each dense layer to mitigate overfitting. 

The final layer utilized a sigmoid activation function for 

binary classification, distinguishing between nominal 

and faulty data. 

The model was compiled using the Adam optimizer 

with a learning rate of 0.0003, and binary cross-entropy 

was used as the loss function. Early stopping procedure 

was implemented to prevent overfitting, halting training 

if the validation loss did not improve after two 

consecutive epochs. The model’s performance was 

evaluated on the test set, yielding accuracy and loss 

metrics to assess its effectiveness in fault detection. 

Artificial neural network modeling 

Experiments were conducted on a computer with an 

Intel Core i5-10500H processor and 16 GB of RAM. The 

Python 3.8 programming environment in Jupyter was 

utilized, with Keras 2.4 and scikit-learn 0.24 versions, 

providing the necessary performance for deep learning 

tasks. 

The dataset consists of 1158 files with vibration 

measurements, each containing high-dimensional 

information with 93752 features that needed to be 

processed and analyzed. There are 865 vectors 

representing class 0 and 293 for class 1. Each file was 

loaded into Python using the numpy and glob libraries, 

resulting in a two-dimensional array where each row 

represented a sample and each column corresponded to a 

feature. This problem was introduced by Eric Bechhoefer 

in the scope of Ukrainian hackathon of scientific works 

of young scientists in the field of intellectual information 

technologies [13]. The initial dataset is available in [14]. 

The neural network was trained over 50 epochs, 

with early stopping implemented to prevent overfitting. 

The training process recorded a significant increase in 

accuracy, starting from 73.48% and reaching a maximum 

accuracy of 100% by the 11th epoch. The loss during 

training decreased rapidly, beginning at 7.51 and 

converging close to zero. The model's performance was 

evaluated on the test dataset, achieving an accuracy of 

94.40% and a loss of 0.2953.  

The loss and accuracy curves indicate that the 

training and validation losses steadily decreased, while 

the training accuracy significantly increased, 

approaching 1.0. To assess the impact of the number of 

PCA components on model performance, tests were 

conducted with different values of n_components (200, 

300, 400). The results showed that as the number of 

components increased, the model's accuracy on the test 

data decreased. Specifically, with n_components = 200, 

the model achieved an accuracy of 90.95%, while for 

n_components = 300, accuracy dropped to 89.66%. 

Further increasing the number of components to 400 

resulted in a test accuracy of 84.91%. At the same time, 

the training accuracy remained high across all variations. 

Based on these results, it was decided to retain 100 

components as the optimal number, as it provided the 

best balance between test accuracy (94.40%) and 

computational complexity. 



Control, Navigation and Communication Systems. 2025. No. 1 ISSN 2073-7394 

80 

 

Results 

The conducted experiments explored the impact of 

different neural network configurations on fault detection 

accuracy. The primary goal was to determine how 

changes in architecture, activation functions, and the 

number of PCA components affect the model's accuracy 

and loss values. The results of experiments are shown in 

Table 1. 

The baseline model consisted of three layers three 

layers with 512, 256, and 128 neurons, used the 

LeakyReLU activation function and 100 PCA 

components. It achieved a test accuracy of 94.40% with 

a loss value of 0.3125.  This configuration served as a 

reference point for comparing the results of subsequent 

experiments. Replacing the LeakyReLU activation with 

regular ReLU neurons keeping the other parameters 

unchanged resulted in a slight improvement in test 

accuracy, reaching 94.83%, although the loss value 

increased to 0.3662. This suggests that while ReLU can 

improve performance, it may also introduce greater 

fluctuations during training.  

A configuration with fewer neurons (256, 128, and 

64 neurons across three layers) led to the highest test 

accuracy of 95.69%. The loss value for this experiment 

was 0.3201, suggesting that although the model was 

effective, it might have been overly specialized to the 

training data. 

Increasing the number of neurons and adding a 

fourth layer (1024, 512, 256, 128 neurons) resulted in a 

slight improvement in test accuracy to 94.83%, with a 

lower loss value of 0.2952. This configuration helped the 

model generalize slightly better, as indicated by the 

reduced loss, though the overall accuracy did not 

significantly increase. Training accuracy remained at 

98.63%, matching the baseline. Reducing the network to 

two layers (512, 256 neurons) allowed us to reach 

98.81% test accuracy with a loss value of 0.3392. This 

shows that a simple architecture can still perform well, 

potentially benefiting from the reduced complexity.  

Reducing the number of PCA components to 50 

showed significant improvement. This model achieved a 

test accuracy of 98.71% with a very low loss of 0.1225, 

which suggests that reducing the dimensionality helped 

to filter out noise and preserve critical patterns.  

On the other hand, increasing the number of PCA 

components to 150 led to a drop in test accuracy to 

92.24%, with the loss value rising to 0.5240. This 

suggests that adding more components introduced 

unnecessary complexity, making it harder for the model 

to learn effectively.  

Finally, increasing the PCA components further to 

200 reduced test accuracy to 91.81% with a loss of 

0.5021. The training accuracy was 98.63%, consistent 

with the baseline. However, the increase in complexity 

from the additional components did not improve 

performance and, in fact, resulted in poorer 

generalization. Probably, it is required to add more 

neurons/layers in the neural network to achieve better 

results for 150 or 200 PCA components. 

Overall, these experiments show that finding the 

optimal configuration of neural network architecture and 

PCA components is critical for achieving high 

performance. In particular, the reduction to 50 PCA 

components proved to be highly effective, significantly 

improving the model's ability to generalize, as evidenced 

by the low test loss and high accuracy. Meanwhile, the 

simpler architecture with two layers also demonstrated 

that reduced complexity can lead to better performance, 

highlighting that a more complex model is not always the 

better option. The baseline architecture of the neural 

network used in this study is shown in Fig. 1. 

Table 1 –  Model Performance Across Different Configurations 

Exp. 
Parameters (Number of 

Neurons, Layers) 
Activation function 

Number of PCA 

Components 
Test Accuracy (%) 

1 512, 256, 128 (3 layers) LeakyReLU 100 94.40 

2 512, 256, 128 (3 layers) ReLU 100 94.83 

3 256, 128, 64 (3 layers) LeakyReLU 100 95.69 

4 1024, 512, 256, 128 (4 layers ) LeakyReLU 100 94.83 

5 512, 256 (2 layers) LeakyReLU 100 98.81 

6 512, 256, 128 (3 layers ) LeakyReLU 50 98.71 

7 512, 256, 128 (3 layers) LeakyReLU 150 92.24 

8 512, 256, 128 (3 layers) LeakyReLU 200 91.81 

 

 

Fig. 1. Architecture of the neural network used for fault detection 

 

It consists of an input layer that processes 100 

principal components, followed by three dense layers 

with 512, 256, and 128 neurons respectively, each using 

LeakyReLU activation and a dropout rate of 0.25. The 
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final output layer utilizes a sigmoid activation for binary 

classification.  

The training process of this network, as shown in 

Fig. 2 while Fig. 3, demonstrates a smooth convergence 

of both training and validation loss, indicating effective 

learning without overfitting. Additionally, the accuracy 

plot reflects that the model achieves high accuracy on 

both training and validation data, confirming the 

robustness of the neural network. 

Discussion 

The results from the experiments highlight several 

interesting insights into optimizing neural network 

models for fault detection, particularly when dealing with 

high-dimensional data and imbalanced datasets. By 

systematically varying the network architecture, 

activation functions, and the number of PCA 

components, we were able to identify configurations that 

improved the model’s performance, as well as those that 

led to less effective results. Below, we discuss the 

implications of these findings. 

 

 
Fig. 2. Training and validation loss over epochs 

 

 
Fig. 3. Training and validation accuracy over epochs 

 

One of the most significant observations was the 

effect of dimensionality reduction through PCA. 

Reducing the number of components to 50 significantly 

improved the model’s performance, leading to a test 

accuracy of 98.71%. This suggests that removing excess 

dimensions helped the model focus on the most critical 

features, effectively filtering out noise and reducing 

overfitting.  

This configuration not only the accuracy but also 

streamlined the learning process, allowing the model to 

generalize better. Conversely, increasing the number of 

PCA components to 150 and 200 degraded the 

performance, with test accuracies dropping to 92.24% 

and 91.81%, respectively.  

These results underscore the importance of finding 

the right balance in dimensionality; too many 

components can lead to unnecessary complexity and 

noise, hindering the model’s ability to generalize. This 

also shows that the high-dimensional vector (with more 

than 93 000 dimensions) could be effectively reduced for 

this problem. 

The experiments with different activation functions 

showed that replacing LeakyReLU with ReLU led to a 

slight increase in test accuracy to 94.83% but also 

increased the loss to 0.3662, suggesting a potential trade-

off between stability and performance. While ReLU may 

boost performance under certain conditions, it can 

introduce more fluctuations during training, which may 

lead to less consistent learning outcomes. On the other 

hand, LeakyReLU proved to be more stable across 

various configurations, as reflected in the baseline 

model's performance. 

The analysis of neural network architecture also 

provided valuable insights. Reducing the model to two 

layers with 512 and 256 neurons produced a high test 

accuracy of 98.81% with a loss of 0.3392. This finding 

suggests that simpler architectures can still achieve 

strong performance, particularly when the data are well-

preprocessed.  

Simpler models often have fewer parameters, which 

can help prevent overfitting and make them more 

efficient.  

In contrast, adding complexity by increasing the 

network to four layers with 1024, 512, 256, and 128 

neurons did not yield a significant improvement, 

maintaining a test accuracy of 94.83% but slightly 

reducing the loss to 0.2952.  

This indicates that additional layers and neurons do 

not always lead to better generalization, and may instead 

complicate the learning process without adding real 

value. 

Furthermore, the experiment that reduced the 

number of neurons in each layer to 256, 128, and 64 

achieved high test accuracy of 95.69%.  

Overall, the experiments demonstrate that 

simplicity and balance are the keys to optimizing model 

performance. Effective dimensionality reduction, as seen 

with 50 PCA components, can streamline the learning 

process and reduce the risk of overfitting by focusing the 

model on the most relevant features. Similarly, the 

success of the two-layer architecture suggests that 

complex, deep networks are not always necessary for 

high performance, especially when the data are processed 

effectively.  
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These findings highlight the importance of data 

preprocessing and careful architecture selection in 

building models that are not only accurate but also 

efficient and robust. 

Conclusions 

The paper addresses the problem of detecting 

equipment faults through approach that uses both 

machine learning techniques and advanced data 

processing strategies.  

The contribution of this research includes the entire 

machine learning pipeline of using data preprocessing 

methods like PCA, SMOTE to address the classification 

problem presented with imbalanced dataset.  

The practical significance of this research provides 

the machine learning model effective automatic tool for 

predictive maintenance of the equipment. 

The prospects for further research may include but 

are not limited with the search for more effective 

architecture of the neural network, deeper research of the 

dependency of accuracy on the quantity of elements in 

PCA analysis, finally, it would be interesting to 

investigate the possibility to train the effective model 

only using synthetic data. 
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Ефективне виявлення відмов у промисловому обладнанні з використанням PCA 

та покращених нейронних мереж на основі SMOTE 

В. В. Гуць, О. В. Гороховатський 

Анотація .  У цьому дослідженні розглядається проблема виявлення відмов у промисловому обладнанні за 

допомогою високовимірних даних вібрації з обмеженою кількістю мічених прикладів. Метою було розробити модель 

нейронної мережі, здатну точно класифікувати вектори вимірювань на нормальні та несправні категорії. Набір даних 

складався з 1158 зразків, кожен із яких містив 93,752 числові ознаки, що представляли два класи: 865 нормальних та 293 

несправних випадки. Було використано комплексний конвеєр попередньої обробки, який включав стандартизацію, 

зменшення розмірності за допомогою методу головних компонент (PCA) і техніку синтетичного збільшення меншості 

(SMOTE) для балансування класів. Розроблена нейронна мережа досягла базової точності 94,40% із 100 компонентами 

PCA. Подальші експерименти показали, що зменшення розмірності архітектури та використання лише 50 компонентів 

PCA підвищило точність до 98,81%, підкреслюючи ефективність запропонованого підходу. Ці результати акцентують 

увагу на корисності комбінування PCA, SMOTE та нейронних мереж для виявлення відмов у високовимірних 

незбалансованих наборах даних. Майбутні напрями досліджень включають вивчення передових архітектур нейронних 

мереж, аналіз впливу кількості компонентів PCA на продуктивність моделі та дослідження можливості навчання 

ефективних моделей на синтетичних даних. 
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