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Abstract .  The article presents a study on the development of a model for the dynamic representation the environmental 

description parameters for a collaborative robot manipulator within the Industry 5.0 requirements. The main focus is a 

mathematical model that allows the robot to quickly adapt to changes in the workspace, ensuring effective and safe interaction 

with humans. The proposed model takes into account data from various sensor systems, such as lidars, cameras, and ultrasonic 

sensors, to continuously update information about the environment. The study also considers algorithms that optimize the process 

of data collection and processing to improve the accuracy of prediction and response of the robot. The results of the work are 

aimed at increasing the efficiency of collaborative robots in production environments, improving the level of automation and 

ensuring harmonious cooperation between humans and machines within modern cyber manufacturing systems. 
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Introduction 

In the context of Industry 5.0 development, there 

is a growing need to integrate humans and robots into a 

joint working ecosystem, where secure collaboration, 

effective communication, and adaptability to changing 

environments are key. Collaborative robotic 

manipulators that interact with humans must not only 

perform their tasks with high accuracy but also respond 

to dynamic changes in the workspace, ensuring safe 

operations. One of the critical requirements for such 

systems is the ability of the robot to continuously update 

the environmental model, including the parameters of 

moving objects, human actions, and other changes in 

space [1]. 

The relevance of the study lies in the need to 

develop methods for dynamic environmental 

description for collaborative robots that take into 

account the current requirements of Industry 5.0. This 

includes not only the creation of mathematical models 

and algorithms for predicting changes in the 

environment, but also their integration with sensor 

systems to ensure a high level of adaptability. The 

development of such methods will help to increase the 

efficiency of robotic systems and their safe cooperation 

with people, which is a critical factor in modern 

production environments [2]. 

The aim of the article is to study and develop a 

dynamic representation of environmental parameters 

for robot manipulators, which will create the basis for 

more efficient integration of robotics into cyber 

manufacturing systems in accordance with the 

requirements of Industry 5.0. 

Main part 

When developing models for dynamic parameter 

updating in a collaborative industrial robot model, it is 

necessary to implement mathematical models and 

algorithms that allow adaptation to changes in the 

environment or in the system's operation. This can be 

realized using various approaches, including adaptive 

control, machine learning, and adaptive filtering 

algorithms [3].  

To dynamically update the workspaceℝ3, the 

model of which is presented in [X], it is proposed to use 

adaptive algorithms to monitor changes in the 

environment: 

ℝ3(𝑡) = ℝ3(𝑡 − 1) + ∆ℝ3(𝑡), (1) 

where ℝ3(𝑡) - three-dimensional space at a moment in 

time 𝑡; 

ℝ3(𝑡 − 1) - three-dimensional space at a moment 

in time 𝑡 − 1, describes the three-dimensional space at 

the previous moment in time. This is the base point from 

which changes are calculated. 

∆ℝ3(𝑡) - means the changes in the workspace at a 

point in time 𝑡 that can be assessed by sensors or a 

monitoring system.  

That is, it reflects the difference or changes that 

have occurred in three-dimensional space between the 

time points 𝑡 − 1 and 𝑡. These changes can be caused 

by object movements, changes in security perimeters, or 

other factors.  

The assessment of ∆ℝ3(𝑡) can be performed using 

various sensors that provide data about the 

environment. These can be described as follows:  

- 3D scanners allow collecting data on the three-

dimensional geometry of the environment of a 

collaborative industrial robot manipulator by 

comparing the captured data with previous scans to 

determine changes in the environment, the model of 

such an assessment can be presented as follows:  

∆ℝ3(𝑡) = 𝐷𝑎𝑡𝑎𝑡
3𝐷 − 𝐷𝑎𝑡𝑎𝑡−1

3𝐷 , (2) 

where 𝐷𝑎𝑡𝑎𝑡
3𝐷 - are data received from a 3D scanner at 

a given moment in time 𝑡 

𝐷𝑎𝑡𝑎𝑡−1
3𝐷  - are data at a previous moment in time 

𝑡 − 1. 

- Light Identification, Detection and Ranging 

(LIDAR) uses laser pulses to determine the distance to 
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objects and create accurate three-dimensional maps, 

allows you to analyze data from lidar scanners to 

determine changes in the location of objects, the model 

of such an assessment can be presented as follows: 

∆ℝ3(𝑡) = 𝐷𝑎𝑡𝑎𝑡
𝐿𝐼𝐷𝐴𝑅 − 𝐷𝑎𝑡𝑎𝑡−1

𝐿𝐼𝐷𝐴𝑅 , (3) 

where 𝐷𝑎𝑡𝑎𝑡
𝐿𝐼𝐷𝐴𝑅 - are data obtained from LIDAR at a 

given moment in time 𝑡; 

𝐷𝑎𝑡𝑎𝑡−1
𝐿𝐼𝐷𝐴𝑅 - are data at a previous moment in time 

𝑡 − 1. 

- cameras (2D or 3D) record images or videos to 

detect objects and their changes in space, allow the use 

of computer vision and AI methods to track objects and 

estimate their movements, the model of such an 

estimate can be presented as follows: 

∆ℝ3(𝑡) = 𝐷𝑎𝑡𝑎𝑡
𝑐𝑎𝑚 − 𝐷𝑎𝑡𝑎𝑡−1

𝑐𝑎𝑚, (4) 

where 𝐷𝑎𝑡𝑎𝑡
𝑐𝑎𝑚 – position of the object according to the 

data received from the camera at the moment of time 𝑡; 

𝐷𝑎𝑡𝑎𝑡−1
𝑐𝑎𝑚 - the position of the object obtained from 

the camera at the previous moment in time 𝑡 − 1. 

- distance sensors (ultrasonic, laser, etc.) (𝑆𝑒𝑛𝑠) 

measure the distance to objects in real time, i.e. collect 

data on changes in distances to objects to assess changes 

in the environment, the model of such assessment can 

be presented as follows: 

∆ℝ3(𝑡) = 𝐷𝑎𝑡𝑎𝑡
𝑆𝑒𝑛𝑠 − 𝐷𝑎𝑡𝑎𝑡−1

𝑆𝑒𝑛𝑠 , (5) 

where 𝐷𝑎𝑡𝑎𝑡
𝑆𝑒𝑛𝑠 – distance to the object according to the 

data received from the sensor at the moment of time 𝑡; 

𝐷𝑎𝑡𝑎𝑡−1
𝑆𝑒𝑛𝑠 – the distance to the object obtained from 

the sensor at the previous moment in time 𝑡 − 1. 

On the basis of 2.45-2.48, changes in three-

dimensional space can be represented as: 

∆ℝ3(𝑡) =
= (𝐷𝑎𝑡𝑎𝑡

3𝐷 , 𝐷𝑎𝑡𝑎𝑡
𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡

𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡
𝑆𝑒𝑛𝑠) − 

−(𝐷𝑎𝑡𝑎𝑡−1
3𝐷 , 𝐷𝑎𝑡𝑎𝑡−1

𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡−1
𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡−1

𝑆𝑒𝑛𝑠), 

(6) 

where 𝐷𝑎𝑡𝑎𝑡
3𝐷 , 𝐷𝑎𝑡𝑎𝑡

𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡
𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡

𝑆𝑒𝑛𝑠 - є 

даними, отриманими від сенсорів на момент часу 𝑡; 

𝐷𝑎𝑡𝑎𝑡−1
3𝐷 , 𝐷𝑎𝑡𝑎𝑡−1

𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡−1
𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡−1

𝑆𝑒𝑛𝑠 - are data 

obtained at a previous point in time 𝑡 − 1. 

Combining these data allows us to adaptively update 

the description of three-dimensional space, taking into 

account changes in the environment, and ensure the 

accuracy and efficiency of the collaborative robot 

manipulator. 

The working area (𝔻) can dynamically change 

depending on changes in objects in space or changes in 

security perimeters (Ω𝑠𝑎𝑓𝑒) and can be described by the 

following expression: 

𝔻(𝑡) = 𝔻(𝑡 − 1) ∪ ∆𝔻(𝑡), (7) 

where 𝔻(𝑡) - workspace at a given time 𝑡, describes the 

space in which the robot operates, including all objects 

(Ω𝑖) and safety perimeters (Ω𝑠𝑎𝑓𝑒) that may affect its 

actions.  

This can be a limited area in which the manipulator 

performs a task, taking into account all new objects and 

changes in the environment; 

𝔻(𝑡 − 1) - workspace at a time moment 𝑡 − 1, 

describes the working area at the previous time point. 

This is the base point from which changes are 

calculated; 

∆𝔻(𝑡) - changes in the workspace at a given time, 

which can be described as new or changed areas of the 

workspace, i.e., it reflects new objects or changes in 

existing objects that have appeared or been changed in 

the workspace between time points 𝑡 − 1 and 𝑡.   

This can be, for example, a new facility, a 

relocated facility, or a change in security perimeters. 

A dynamic workspace (𝔻(𝑡)) can be described as a 

system that is constantly updated in response to changes 

in the environment (∆𝔻(𝑡)). Updating can occur in real 

time due to data from sensors and cameras [5-7] that 

track changes in the environment. As a result ∆𝔻(𝑡), 

within the framework of these studies, it can be 

represented as follows [4]:  

- 3D scanners and lidars collect data about the three-

dimensional geometry of the environment, identifying 

new objects or changes in the location of objects. New 

information obtained from scanners or lidars can be 

represented as an addition to the previous zone and can 

be described as follows: 

∆𝔻(𝑡)= Ω𝑛𝑒𝑤
3𝐷,𝐿𝐼𝐷𝐴𝑅

, (8) 

where Ω𝑛𝑒𝑤
3𝐷,𝐿𝐼𝐷𝐴𝑅

 - new objects or changes in the location 

of objects, obtained from scanners or lidars, 

- camera(s) collect images or video to detect new 

objects or changes in the environment. New or changed 

objects detected in the images are added to the 

workspace and can be described as follows: 

∆𝔻(𝑡)= Ω𝑛𝑒𝑤
𝑐𝑎𝑚, (9) 

where Ω𝑛𝑒𝑤
𝑐𝑎𝑚 - new objects or changes in the location of 

objects received from the camera; 

- distance sensors measure the distance to objects, 

which allows detecting new objects or changes in their 

location, new data from distance sensors are added to 

the working area, and can be described as follows: 

∆𝔻(𝑡)= Ω𝑛𝑒𝑤
𝑠𝑒𝑛𝑠 , (10) 

where Ω𝑛𝑒𝑤
𝑠𝑒𝑛𝑠 - new objects or changes in the location of 

objects received from distance sensors; 

As a result, the mathematical description of the 

dynamic work area can be obtained by modernizing 

expression 7 and using expressions 8-10, the result of 

this solution is given below:    

𝔻(𝑡) =
= (𝐷𝑎𝑡𝑎𝑡−1

3𝐷 , 𝐷𝑎𝑡𝑎𝑡−1
𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡−1

𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡−1
𝑆𝑒𝑛𝑠

∪ Ω𝑛𝑒𝑤
3𝐷,𝐿𝐼𝐷𝐴𝑅, Ω𝑛𝑒𝑤

𝑐𝑎𝑚 , Ω𝑛𝑒𝑤
𝑠𝑒𝑛𝑠)\ 

\Removed (Ω𝑡−1
3𝐷,𝐿𝐼𝐷𝐴𝑅 , Ω𝑡−1

𝑐𝑎𝑚 , Ω𝑡−1
𝑠𝑒𝑛𝑠) 

(11) 

where 𝐷𝑎𝑡𝑎𝑡−1
3𝐷 , 𝐷𝑎𝑡𝑎𝑡−1

𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡−1
𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡−1

𝑆𝑒𝑛𝑠- is the 

working space of the collaborative robot manipulator at 

the previous moment in time, all objects and areas that 

were relevant at the moment 𝑡 − 1, formally, this is an 

extended representation 𝔻(𝑡 − 1) from expression 7; 

Ω𝑛𝑒𝑤
3𝐷,𝐿𝐼𝐷𝐴𝑅 , Ω𝑛𝑒𝑤

𝑐𝑎𝑚 , Ω𝑛𝑒𝑤
𝑠𝑒𝑛𝑠  - are new objects that have 

been added to the workspace between time 𝑡 − 1 and 𝑡, 
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as a result, objects have appeared in the workspace and 

need to be added to the previous zone, formally, this is 

an extended representation∆𝔻(𝑡) from expression 2.50;  

Removed (Ω𝑡−1
3𝐷,𝐿𝐼𝐷𝐴𝑅, Ω𝑡−1

𝑐𝑎𝑚 , Ω𝑡−1
𝑠𝑒𝑛𝑠) - are objects 

that were in the workspace earlier (at time 𝑡 − 1), but 

are no longer part of the workspace. This can be because 

the objects have moved, been deleted, or are no longer 

relevant.  

Based on 11: 

𝐷𝑎𝑡𝑎𝑡−1
3𝐷 , 𝐷𝑎𝑡𝑎𝑡−1

𝐿𝐼𝐷𝐴𝑅 , 𝐷𝑎𝑡𝑎𝑡−1
𝑐𝑎𝑚 , 𝐷𝑎𝑡𝑎𝑡−1

𝑆𝑒𝑛𝑠 ∪

Ω𝑛𝑒𝑤
3𝐷,𝐿𝐼𝐷𝐴𝑅, Ω𝑛𝑒𝑤

𝑐𝑎𝑚 , Ω𝑛𝑒𝑤
𝑠𝑒𝑛𝑠 – 

the operation of combining two sets - the previous 

workspace and the new objects.  

This creates an updated set of objects that are in 

the workspace at the time of 𝑡, including new objects, 

and Removed (Ω𝑡−1
3𝐷,𝐿𝐼𝐷𝐴𝑅 , Ω𝑡−1

𝑐𝑎𝑚 , Ω𝑡−1
𝑠𝑒𝑛𝑠) - the set 

difference operation removes objects that are no longer 

part of the workspace.  

That is, those objects that have been deleted or are 

no longer relevant are removed from the result of the 

merge (with new objects). 

Here is an example of how 11 allows you to 

dynamically update the workspace, adapting it to 

changes in the environment of the colaborative robot 

manipulator.  

Suppose that the working area of the collaborative 

robot manipulator at the previous time 

𝔻(𝑡 − 1) = 𝐴, 𝐵, 𝐶 

has the following objects , and suppose the appearance 

of Ω𝑛𝑒𝑤
𝑐𝑎𝑚 = {𝐷, 𝐸} that are the new objects that were 

added to the working area between 𝑡 − 1and 𝑡, while the 

object{𝐵} left the working area and is no longer part of 

it. Then, according to 11, a merge is:  

{𝐴, 𝐵, 𝐶} ∪ {𝐷, 𝐸} = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸},  

and a delete is  

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}\{𝐵} = {𝐴, 𝐶, 𝐷, 𝐸}.  

Thus, at the moment 𝑡, the working area 𝔻(𝑡) will 

include objects{𝐴, 𝐶, 𝐷, 𝐸} excluding objects that have 

been deleted. The proposed model 11 based on 7 allows 

us to dynamically update the working area, adapting it 

to changes in the environment, which is important for 

the accuracy and safety of collaborative industrial 

robots.  

The model of the dynamics of objects in space is 

based on the model of objects in space Ω𝑖 , and 

represents both areas with certain geometric shapes and 

sizes, the mathematical description of which is given in 

[5]. To dynamically update the location of objectsΩ𝑖 , it 

is proposed to use object tracking algorithms. Based on 

this, the model of the dynamics of objects in the 

working area of the collisional robot manipulator can be 

represented as follows:  

Ω𝑖(𝑡) = Ω𝑖(𝑡 − 1) + ∆Ω𝑖(𝑡), (12) 

where Ω𝑖(𝑡) - is the set of objects in space at a moment 

in time 𝑡, the state of objects in space at the current 

moment in time 𝑡, and includes all objects that are in the 

working area of the colobrative robot manipulator at 

this moment; 

Ω𝑖(𝑡 − 1) - is the set of objects in space at a moment 

of time 𝑡 − 1, is the state of objects in space at the 

previous moment of time 𝑡 − 1, is the base set of objects 

from which the update starts. 

∆Ω𝑖(𝑡)- change in the set of objects for the period 

from 𝑡 − 1 to 𝑡, that is, new objects that have appeared 

or changes in existing objects. In other words, it is the 

difference between the current and previous state of 

objects. It can include new objects that have appeared 

or changes in the properties of existing objects (e.g., 

moving, resizing, changing state). 

Model 12 describes how the set of objects in space 

is updated over time, allowing for dynamic changes in 

the environment, such as the addition of new objects or 

changes to existing ones. To give a mathematical 

description, the set of objects at time t can be described 

as Ω𝑖(𝑡) = {Ω𝑐 , Ω𝑐𝑦 , Ω𝑐𝑜 , Ω𝑐𝑢 , . . , Ω𝑞𝑝}, where 

Ω𝑐 , Ω𝑐𝑦 , Ω𝑐𝑜 , Ω𝑐𝑢 , . . , Ω𝑞𝑝 - objects in space that are 

represented as areas with certain geometric shapes and 

sizes. Changes in the objects ∆Ω𝑖(𝑡) can be divided into 

two types of changes: new objects ∆Ω𝑖
+ (𝑡) and objects 

that have been deleted or modified ∆Ω𝑖
− (𝑡). Then: 

∆Ω𝑖(𝑡) = ∆Ω𝑖
+ (𝑡) ∪  ∆Ω𝑖

− (𝑡). (13) 

Based on 12 and 13, the updated set will look like 

this: 

Ω𝑖(𝑡) = Ω𝑖(𝑡 − 1) ∪ ∆Ω𝑖
+ (𝑡)\∆Ω𝑖

− (𝑡) , (14) 

where Ω𝑖(𝑡 − 1) - a set of objects in space at a given 

time moment 𝑡 − 1, is the state of objects in space at a 

previous moment in time 𝑡 − 1, is the base set of objects 

from which the update starts; 

∆Ω𝑖
+ (𝑡) - new objects in the working area of the 

collaborative robot manipulator; 

∆Ω𝑖
− (𝑡) - objects that have been deleted or 

modified in the working area of the collaborative robot 

manipulator. 

For example, let's assume that there are the 

following objects in our workspace, at the time  𝑡 − 1: 

Ω𝑖(𝑡 − 1) = {𝐴, 𝐵, 𝐶}, new objects at time 𝑡: ∆Ω𝑖
+ (𝑡) =

{𝐷} and objects deleted or changed at 𝑡: ∆Ω𝑖
− (𝑡) = {𝐵}. 

Then, in accordance with 14, we have the following 

updated set: 

Ω𝑖(𝑡) = {𝐴, 𝐵, 𝐶} ∪ {D}\{𝐵} = {𝐴, 𝐶, 𝐷}.  (15) 

Thus, at time t, the number of objects in the working 

area of the collaborative robot manipulator will be 

{𝐴, 𝐶, 𝐷}, where object 𝐵 was deleted, and the object 𝐷 

was added. The proposed model of the dynamics of 

objects in the working area of a collaborative robot 

manipulator allows the system to dynamically update 

the list of objects in the environment, which is important 

for ensuring the accuracy and relevance of data in 

robotic systems. 

The motion dynamics model 𝒒(𝑡)is based on the 

mathematical representation of the position function 

and can be implemented using adaptive control 

algorithms that take into account changes in the 

environment or in the system operation [7]: 
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𝒒(𝑡) = 𝒒(𝑡 − 1) + ∆𝒒(𝑡) (16) 

where 𝒒(𝑡) - is the state vector of the robot or 

manipulator at time t. 

 It includes the coordinates of the joints, the 

position of the end effector, or other system parameters 

that change over time. If it is represented as a vector of 

joint positions, it can be described as follows 𝒒(𝑡) =
[𝑞1(𝑡), 𝑞2(𝑡), … , 𝑞𝑛(𝑡)]𝑇, Where 𝑞𝑛(𝑡) – is the position 

of the n-joint at a time moment 𝑡; 

𝒒(𝑡 − 1) - is the vector of the state of the robot or 

manipulator at the previous time moment t-1, and is the 

base state from which the update is performed; 

∆𝒒(𝑡) - change in the system state for the period 

from 𝑡 − 1, and may include changes in joint position, 

velocity, acceleration, or other variables that 

characterize the dynamics of the system. Mathematical 

representation ∆𝒒(𝑡) = [∆𝑞1(𝑡), ∆𝑞2(𝑡), … , ∆𝑞𝑛(𝑡)]𝑇, 

where ∆𝑞𝑛(𝑡) – change in the position of the n-joint at 

a time moment 𝑡. 

To give an example, let's say we have a robot with 

three joints. The state vectors of the joints at different 

times are described as follows: 

- at the moment 𝑡 − 1: 𝒒(𝑡 − 1) = [𝑞1(𝑡 −
1), 𝑞2(𝑡 − 1), 𝑞3(𝑡 − 1)]𝑇 = [1.0,0.5, −0.3] – in 

radians; 

- change of state for the period∆𝒒(𝑡) =
[∆𝑞1(𝑡), ∆𝑞2(𝑡), ∆𝑞3(𝑡)]𝑇 = [0.05, −0.02,0.1] – in 

radians. 

Then the updated state vector in accordance with 

16 will be as follows: 

𝒒(𝑡) = [1.0,0.5, −0.3]𝑇 + 
+[0.05, −0.02,0.1]𝑇 = [1.05,0.48, −0.2]𝑇 . 

(17) 

Let's interpret the results in 17: the position of the 

first joint changed from 1.0 radians to 1.05 radians; the 

position of the second joint changed from 0.5 radians to 

0.48 radians; the position of the third joint changed from 

-0.3 radians to -0.2 radians [6].  

The proposed formula 16 describes how the 

system parameters (e.g., the position of the joints or the 

end effector) change over time.  

This is important for modeling the movement of a 

robot or manipulator, tracking its positions, velocities, 

and accelerations. 

Motion dynamics model 𝝉 (𝑡) should take into 

account changes in the environment and in the system 

operation, and is an extension of 𝝉 (2.13) and is as 

follows:  

𝝉(𝑡) = 𝑴(𝒒(𝑡))𝒒̈(𝑡) + 

+𝑪(𝒒(𝑡), 𝒒̇(𝑡))𝒒̇(𝑡) + 𝑮(𝒒(𝑡)) + ∆𝝉(𝑡), (18) 

where 𝝉(𝑡) - is a vector of force moments (torsions) 

applied to the joints of a robot or manipulator at time 

moment t. These are controlling forces or moments that 

are required to achieve a given state or execute a 

command; 

𝑴(𝒒(𝑡)) - the inertia matrix, which depends on the 

state vector q(t), describes how the inertia of the joints 

changes depending on their position; 

𝒒̈(𝑡) - is the vector of joint accelerations at time t, 

taking into account the dynamic effects associated with 

accelerations; 

𝑪(𝒒(𝑡), 𝒒̇(𝑡)) - Coriolis matrix and centrifuge 

forces and their speeds 𝒒̇(𝑡), matrix describes the forces 

arising from centrifugal effects; 

𝒒̇(𝑡) - The vector of joint velocities at a moment 

in time 𝑡, taking into account the Coriolis and centrifuge 

effects; 

𝑮(𝒒(𝑡)) - The vector of gravitational forces acting 

on the robot's joints. Depends on the position of the 

joints q(t) and describes the forces arising from gravity;  

∆𝝉(𝑡) - changes in force moments, which can be 

the result of external influences or uncertain changes.  

This can include noise, measurement errors, or 

unaccounted-for dynamic effects, and can look like this 

for a three-joint robot:  

∆𝝉(𝑡) = [

𝑛𝑜𝑖𝑠𝑒1(𝑡)
𝑛𝑜𝑖𝑠𝑒2(𝑡)

𝑛𝑜𝑖𝑠𝑒3(𝑡)
], (19) 

where 𝑛𝑜𝑖𝑠𝑒1(𝑡) - noise or uncertainty change 

component for the first joint or system element. It can 

be caused by mechanical malfunctions, measurement 

errors or other external factors; 

𝑛𝑜𝑖𝑠𝑒2(𝑡) - noise component or uncertainty 

change for the second joint or system element. It can 

affect control accuracy and system dynamics; 

𝑛𝑜𝑖𝑠𝑒3(𝑡) - noise component or undefined change 

for the third joint or system element. It can be the result 

of additional forces acting on the third component of the 

system or special operating conditions. 

Within the framework of these studies, it is 

proposed to model the noise as a random process with a 

normal distribution, which is determined by the average 

value of 𝜇𝑖 and dispersion 𝜎𝑖
2.  

Formally, this can be presented as: 

∆𝝉(𝑡) = [

𝑛𝑜𝑖𝑠𝑒1(𝑡)
𝑛𝑜𝑖𝑠𝑒2(𝑡)

𝑛𝑜𝑖𝑠𝑒3(𝑡)
], (20) 

where 𝑛𝑜𝑖𝑠𝑒1(𝑡) - noise or uncertainty change 

component for the first joint or system element. It can 

be caused by mechanical malfunctions, measurement 

errors or other external factors; 

𝑛𝑜𝑖𝑠𝑒2(𝑡) - noise component or uncertainty 

change for the second joint or system element. Can 

affect control accuracy and system dynamics; 

𝑛𝑜𝑖𝑠𝑒3(𝑡) - noise component or uncertainty 

change for the third joint or system element. It may be 

the result of additional forces acting on the third system 

component or special operating conditions. 

Noise in this study is considered as a random or 

statistical change that may have a normal distribution. 

It is defined as a random process with certain 

parameters and will be modeled as a random process 

with a normal distribution.  

The normal distribution is defined by the mean 𝜇𝑖 

and dispersion 𝜎𝑖
2. Formally, it can be described as 

follows:  
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𝑛𝑜𝑖𝑠𝑒𝑖(𝑡)~𝒩(𝜇𝑖 , 𝜎𝑖
2) (21) 

where 𝜇𝑖 - is the average noise value for the i-th 

component; 

𝜎𝑖
2 - is the noise dispersion for the i-th component. 

Uncertain variables can be deterministic or 

random and may include the effects of environmental 

changes or malfunctions.  

They can be described as additional or corrective 

components that do not have a clear statistical model. 

To give an example, let's say there is a manipulator 

with three joints, and you need to model changes in 

force moments due to noise [8]: 

- noise for the first joint 𝑛𝑜𝑖𝑠𝑒1(𝑡) has a mean of 0 

and a dispersion of 0.1. This can be represented as 

𝑛𝑜𝑖𝑠𝑒1(𝑡)~𝒩(0, 0.12); 

- noise for the second joint 𝑛𝑜𝑖𝑠𝑒2(𝑡) has a mean 

of 0 and a dispertion of 0.05. This can be written as 

𝑛𝑜𝑖𝑠𝑒2(𝑡)~𝒩(0, 0.052); 

- noise for the third joint 𝑛𝑜𝑖𝑠𝑒3(𝑡) has a mean of 

0 and a dispertion of 0.2. This can be expressed as 

𝑛𝑜𝑖𝑠𝑒3(𝑡)~𝒩(0, 0.22). 

Thus, the total vector of change in force moments 

can be represented as in 20, where each component 

𝑛𝑜𝑖𝑠𝑒𝑖(𝑡) is a normally distributed random noise with 

the corresponding parameters. 

The mathematical representation of the 

vector ∆𝝉(𝑡) within the framework of the motion 

dynamics model 𝝉 (𝑡) (21) is important for the accuracy 

of manipulator control and monitoring.  

Its modeling helps in assessing and correcting 

errors that may occur due to uncertain or random 

changes in the system [9]. 

The safety perimeters Ω𝑠𝑎𝑓𝑒  can change depending 

on new data about objects in the environment or 

changes in the system operation at time t, so the 

dynamic model (updating the safety perimeters) can be 

represented as follows:  

Ω𝑠𝑎𝑓𝑒(𝑡) =  Ω𝑠𝑎𝑓𝑒(𝑡 − 1) ∪ ∆Ω𝑠𝑎𝑓𝑒 , 
(21) 

where Ω𝑠𝑎𝑓𝑒(𝑡) - safety perimeters at time t, is a set of 

areas in space that define safety zones around the robot, 

which may include areas of danger to people and other 

objects. In this research, it is presented as a set that 

defines the boundaries where robots should limit their 

activities to ensure safety; 

Ω𝑠𝑎𝑓𝑒(𝑡 − 1) - security perimeters at the previous 

time t-1, These are the values of security perimeters 

before the update at time 𝑡; 

∆Ω𝑠𝑎𝑓𝑒  - changes in security perimeters, which is 

a set of new zones or changes to existing security zones 

that need to be considered when updating the security 

model.  

It can include new zones that are added or changes 

in the size of existing zones. 

To give an example, suppose that at time t-1, the 

safety p 

erimeters of the manipulator are defined as an area 

around the robot that includes a radius (r) - 2 meters. At 

time t, the safety perimeters may be updated due to new 

conditions, such as: 

- new perimeters, a new safety zone with a radius 

of 1 meter is added around certain objects in the work 

area; 

- changes in the existing perimeters, the average 

radius of the safety zone is increased by 0.5 meters. 

Mathematically, this can be represented as 

follows: 

- The safety perimeter at time t-1, which is equal 

to r=2 meters, can be represented as follows:  

 Ω𝑠𝑎𝑓𝑒(𝑡 − 1) = Ω𝑠𝑎𝑓𝑒{𝑟 = 2 meters}; (22) 

- new perimeters or changes, can be described as 

follows: 

∆Ω𝑠𝑎𝑓𝑒 = Ω𝑠𝑎𝑓𝑒
𝑛𝑒𝑤 𝑟 = 1meters ∪ 

∪ Ω𝑠𝑎𝑓𝑒
𝑒𝑥𝑝𝑎

𝑟 = 2.5meters. 
(23) 

To obtain the model of the updated security 

perimeters at time t, we substitute models 23 and 24 into 

22, and we get the following model:  

Ω𝑠𝑎𝑓𝑒(𝑡) = Ω𝑠𝑎𝑓𝑒𝑟 = 2meters ∪ 

∪ Ω𝑠𝑎𝑓𝑒
𝑛𝑒𝑤 𝑟 = 1meters ∪ Ω𝑠𝑎𝑓𝑒

𝑒𝑥𝑝𝑎
𝑟 = 

= 2.5meters. 
(24) 

Model 24 allows to take into account dynamic 

changes in the security zone, adapting it in accordance 

with new conditions or security requirements.  

The safety perimeters Ω𝑠𝑎𝑓𝑒(𝑡) in the context of 

the collaborative industrial robot model, defines areas 

or zones around the robot where movement or the robot 

may be restricted to ensure the safety of people and 

equipment. 

Adaptive communication u(t) in the context of a 

collaborative industrial robot represents the process of 

exchanging information between the robot system and 

the operator or other systems, which can change in 

accordance with changes in the environment or in the 

system's operation. 

 In order to consider the function u(t) in a dynamic 

space, it is necessary to describe the state of 

communication at time t, the mathematical 

representation of which is given below: 

𝑢 (𝑡) = 𝑢 (𝑡 − 1) + ∆𝑢 (𝑡) , (25) 

where 𝑢 (𝑡) - is the state of communication at time t, 

which is the current set of commands, messages, or 

information that the robot system exchanges with the 

operator or other systems. It should be noted that this 

parameter can include both information about the 

robot's state and reactions to external commands or 

conditions; 

𝑢 (𝑡 − 1) - is the state of communication at the 

previous time t-1, but it is a set of commands or 

information that was relevant up to the time 𝑡; 

∆𝑢 (𝑡) - changes in communication can be: 1) 

These are new commands or messages that need to be 

added to the system to accommodate changes in the 

environment or in the operation of the system. 2) It may 

include changes in the interaction between the robot and 

the operator, new instructions to be followed, or new 

data to be transmitted. 
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To give an example, suppose that the robot system 

at time t-1 received and transmitted information about 

the current position and speed.  

At time t, the system adapts to the new conditions, 

where the operator adds a new command to change the 

trajectory, and the system needs to report the current 

battery status. 

Then the communication at time t-1 can be 

represented as follows: 

𝑢 (𝑡 − 1) = {Position Information, 
Speed Information}. 

(26) 

New changes in communication: 

∆𝑢 (𝑡) = {Trajectory Change Command, 
Battery Status Update}. 

(27) 

Then the updated communication at time t, 

respectively, 2.67 will be as follows: 

𝑢 (𝑡) = {Position Information, 
Speed Information, 

Trajectory Change Command, 
Battery Status Update}. 

(28) 

As can be seen from 28, adaptive communication 

can include mechanisms that allow the system to 

automatically change communication protocols 

depending on the context. For example: 

- changes in environmental conditions, If the robot 

detects a new object in the work area, the system can 

automatically communicate information about the new 

object to the operator and request confirmation of 

further action; 

- changes in the system operation, if the robot 

detects a decrease in the battery level, the system can 

initiate a notification to the operator and possibly 

suggest switching to an economical mode. 

Such solutions allow collaborative robotic 

manipulators to not only respond to external changes, 

but also actively communicate with the operator, 

providing a continuous flow of information necessary 

for safe and efficient collaboration. 

The adaptive learning model 𝕄(𝑡)means that the 

model is constantly updated based on new data or new 

conditions encountered by the robot manipulator.  

This allows the robot to improve its performance 

and adapt to changes in the environment or operating 

conditions.  

Adaptive learning model 𝕄(𝑡) is as follows: 

𝕄(𝑡) = 𝕄(𝑡 − 1) + ∆𝕄(𝑡), (29) 

where 𝕄(𝑡) - is the state of the trained model at time t, 

a set of parameters or rules that determine the current 

level of knowledge or skills of the system. In the context 

of a robot manipulator, this can be a model that defines 

how the robot performs certain tasks, including control 

rules, sensor data processing, object recognition, etc.; 

𝕄(𝑡 − 1) - is the state of the trained model at time 

t-1, which is the previous state of the model before any 

changes were made or additional training was 

performed. This is the starting point from which the 

model can change over time; 

∆𝕄(𝑡) - changes in training or model updates and 

may be: 1. New knowledge, skills, or rules that are 

added to the model as a result of training, adaptation, or 

learning from new data; 2. Can be the result of learning 

from new data obtained during operation or the result of 

optimizing the model for better performance. 

To give an example, let's say that a collaborative 

robot manipulator has initially learned to recognize 

three main types of objects in the work area.  

However, in the course of its work, the robot 

encounters new objects (12) that need to be 

recognized or new situations that require changing 

control rules.  

Accordingly, the initial state of the trained model 

at the time 𝑡 − 1 is as follows:  

𝕄(𝑡 − 1) = Ω𝑠, Ω𝑜 , Ω𝑡, (30) 

where Ω𝑠 – the object is recognized as an area with a 

geometric shape of a cube;  

Ω𝑜 - the object is recognized as an area with a 

geometric shape of a cylinder; 

Ω𝑡 - the object is recognized as an area with a 

geometric shape of a cone. 

The robot collected new data and underwent 

additional training to recognize a new type of object (for 

example, a parallelepiped (Ω𝑟ℎ)) or new rules of 

behavior when interacting with this object.  

Then changes in learning ∆𝕄(𝑡) will have the 

following form: 

∆𝕄(𝑡)  = Ω𝑟ℎ +  new conduct rules, (31) 

where Ω𝑟ℎ - the object recognized as an area with the 

geometric shape of a rectangular parallelepiped. 

Then the updated state of the trained model at time 

𝑡, for this example, will be as follows: 

𝕄(𝑡)  = Ω𝑠, Ω𝑜 , Ω𝑡 + Ω𝑟ℎ + 
 + new conduct rules. (32) 

In this way, the robot manipulator constantly 

adapts its model based on new knowledge, which allows 

it to better cope with new situations or objects in the 

work area.  

This can be realized as part of machine learning 

algorithms that allow the robot to “learn” while 

working, or through software updates based on 

feedback from sensors and control systems. 

Conclusions 

As a result of the study, a model for the dynamic 

representation of environmental description parameters 

for a collaborative robot manipulator that meets the 

requirements of Industry 5.0 was developed.  

The developed model allows robotic 

manipulators to quickly respond to changes in the 

workspace, ensuring effective and safe cooperation 

with humans.  

The main advantage of this model is the 

integration of data from various sensor systems, such as 

lidars, cameras, and ultrasonic sensors, which allows for 

a complete and accurate picture of the robot's 

environment in real time.  
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This makes it possible to work in dynamic 

environments where there are constant changes, such as 

moving objects, changing lighting, or unforeseen 

obstacles. 

The model also takes into account the parameters 

of human behavior, which is a key factor in ensuring 

safe cooperation between the robot and the operator in 

a common space.  

Thanks to the introduction of algorithms for 

processing large amounts of data in real time, the 

system is able to adapt to new conditions without the 

need to completely rebuild the entire system.  

This increases the flexibility and reduces the cost 

of operating robotic systems in production 

environments. 

It is proposed to implement the developed model 

in robotic systems used in automated production, where 

it is important to ensure the integration of robots with 

other components of the cyber production system.  

The use of this model will increase the efficiency 

of production processes, reduce the accident rate, and 

ensure safe cooperation between humans and machines. 

In addition, the implementation of such solutions will 

help optimize the costs of developing and integrating 

robotic systems, as the model supports scalability and 

can be adapted to different use cases. 

Promising areas for further research include 

improving machine learning algorithms to predict 

changes in the environment even more accurately, as 

well as integrating artificial intelligence systems to 

improve the interaction between the robot and the 

operator.  

The implementation of the developed model will 

help to accelerate automation processes and increase the 

level of integration of robots into modern cyber 

production systems of Industry 5.0, where the priority 

is not only automation but also harmonious cooperation 

between humans and machines. 
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Розробка моделі динамічного представлення  

параметрів моделі опису навколишнього середовища  

колоборативного робота маніпулятора в рамках індустрій 5.0 

І. Ш. Невлюдов, В. В. Євсєєв, Д. В. Гурін 

Анотація .  У статті представлено дослідження, присвячене розробці моделі динамічного представлення 

параметрів опису навколишнього середовища для колоборативного робота-маніпулятора в контексті вимог Індустрії 5.0. 

Основна увага приділяється створенню математичної моделі, яка дозволяє роботу швидко адаптуватися до змін у 

робочому просторі, забезпечуючи ефективну і безпечну взаємодію з людиною. Запропонована модель враховує дані з 

різних сенсорних систем, таких як лідари, камери та ультразвукові датчики, для постійного оновлення інформації про 

навколишнє середовище. У дослідженні також розглядаються алгоритми, що дозволяють оптимізувати процес збору та 

обробки даних для підвищення точності прогнозування і реакції робота. Результати роботи спрямовані на підвищення 

ефективності колоборативних роботів у виробничих умовах, покращення рівня автоматизації та забезпечення гармонійної 

співпраці між людиною і машиною в межах сучасних кібервиробничих систем. 

Ключові  слова:  колоборативний робот, динамічне представлення, модель навколишнього середовища, Індустрія 

5.0, сенсорні системи, робот-маніпулятор, безпека співпраці, автоматизація, адаптивність, кібервиробничі системи. 
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