
Control, Navigation and Communication Systems. 2024. No. 3 ISSN 2073-7394

196

UDC 004.9 doi: 10.26906/SUNZ.2024.3.196

Yuliia Andrusenko1, Dmytro Lysytsia2

1 Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
2 National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

IAAS PERFORMANCE ASSESSMENT WITH SERVICE LEVELS

Abstract . The paper proposes a modification of the IaaS cloud model. To demonstrate the practicality and competitiveness

of the method, a comprehensive performance study is conducted using simulation. Workloads based on real production runs

of heterogeneous HPC systems are used to evaluate the practicality of the scheduling method. An online scheduling problem

is considered. Jobs arrive one after another, and after a new job arrives, the scheduler must decide whether to reject this

incoming job or schedule it on one of the machines. The problem is online, since the scheduler must solve it without

information about the next jobs.

Key words: IAAS, service levels, distribution, jobs.

Introduction

Infrastructure as a Service (IaaS) is a cloud

computing service model where computing resources are

hosted in a public cloud, private cloud, or hybrid cloud.

With the IaaS model, it is possible to partially or

completely move an on-premises or distributed data

center infrastructure to the cloud, where it is maintained

and managed by a cloud provider [1–4].

The main problem of the paper is online scheduling.

Jobs arrive one after another [5, 6]. When a new job

arrives, the scheduler must decide whether to reject this

new job or schedule it on one of the machines. The

problem is online. Because the scheduler must solve it

without information about the next jobs [7–9]. For this

problem, the performance of the algorithms is evaluated

by a set of metrics. They include the contention factor

and the number of accepted jobs [10].

In the beginning, two greedy algorithms with one

service level are investigated [11]. In both cases, the key

properties of the service level must be met to provide

benefits for real-world settings. Since the service level is

often considered as a successor to the real-time paradigm,

the service-oriented one with deadlines [12–14].

Basic material

Consider a set of service levels offered by an service

level agreement (SLA). Let it be 𝑆 [𝑆1, 𝑆2, ,…, 𝑆𝑙, …].

For a given 𝑆L𝑗𝑙, a job 𝑗 requires a throughput of 𝑠𝑗𝑙, which

is guaranteed by the provisioning of the corresponding

virtual machine VM, and incurs a cost S𝑙 per unit of

execution time depending on the required urgency. This

urgency is expressed through the slack factor f𝑗𝑙 ≥ 1;

u𝑚𝑎𝑥 = max {u𝑗𝑙} denotes the maximum cost for all

l=1…k and 𝑗 =1…𝑛. The total number of jobs submitted

to the system is 𝑛r.

Each job 𝑗 is described by a tuple ‹𝑟𝑗, w𝑗, d𝑗, 𝑆𝑗, SL𝑗𝑙›

containing the release date 𝑟𝑗, the amount of work w𝑗

describing the computational load that must be executed

before the required response time, the deadline d𝑗, and the

service level 𝑆L𝑗𝑙.

Let 𝑝𝑗 = w𝑗 / 𝑠𝑗𝑙 be the guaranteed time that the

system will spend processing the job before the deadline,

according to the service level 𝑆L𝑗𝑙. Let d𝑗 be the latest time

by which the system must execute job J𝑗 if it is accepted.

This value is calculated when a job is accepted as dj =

= 𝑟𝑗 + f𝑗𝑙 𝑝𝑗. The maximum time for a job to complete is

d𝑚𝑎𝑥 = max {d𝑗𝑙}. When a job is submitted for execution,

its characteristics are known.

The revenue that the system will receive for

executing job J𝑗 is calculated as u𝑗𝑙 𝑝𝑗. Once a job has

been submitted, the scheduler must decide whether to

accept the job or not before other jobs arrive.

In order to accept job J𝑗, the scheduler must ensure

that some machine in the system is capable of executing

it before its deadline. If accepted, later submitted jobs

cannot cause job J𝑗 not to be executed before its deadline.

Once a job is accepted, the scheduler uses some rule

to generate an execution plan. The set of accepted jobs

J = [J1, J2, …J𝑛] is a subset of the incoming jobs, where

𝑛 ≤ 𝑛r is the number of accepted jobs.

Consider a set of heterogeneous machines M = [M1,

M2, …, M𝑚]. Each machine M𝑖 is described by a tuple

‹𝑠i, eff𝑖› indicating its relative processing speed 𝑠𝑖 and its

energy efficiency eff𝑖. At a time, only a subset of all

machines can accept a job. Let M𝑎(t) = [M1, M2, …] be

such a set of admissible machines. This set is defined for

each job as the subset of available machines that can

execute the job without missing deadlines and can

guarantee the processing power 𝑠𝑗 for processing.

Machines whose processing speed is less than the speed

guaranteed by the SLA cannot accept the job.

The value of 𝑠𝑖 is conservatively chosen such that

the speedup of all applications exceeds 𝑠𝑖. Thus, users

receive the same guarantees regardless of which

processors are used. Deadlines are calculated based on

the service level and cannot be changed, and the

guaranteed processing time is not violated by slower

processing. 𝐶𝑚𝑎𝑥 denotes the execution time of all jobs.

Next, we consider a two-level scheduling approach

(Fig. 1). At the upper level, the system checks whether

the job can be accepted or not using the Greedy

acceptance policy. If the job is accepted, the system

selects a machine from the set of admissible machines to

execute it at the lower level.

A greedy acceptance policy is used at the upper

level. It is based on the EDD algorithm, which prioritizes

jobs according to their deadlines. When a job J𝑗 is

submitted to the system, in order to determine whether to

accept or reject it, the system searches for a set of

machines that can execute job J𝑗 before its deadline,

ensuring that no job in a machine is late.

© Andrusenko Yu., 2024

ISSN 2073-7394 Системи управління, навігації та зв'язку. 2024. № 3

197

Fig. 1. Two-level scheduling approach using upper-level

acceptance policy and lower-level allocation strategies

If the set of available machines is not empty

(|M𝑎(𝑟𝑗)| ≥ 1), then job J𝑗 is accepted, otherwise it is

rejected. This completes the first stage of scheduling.

At the lower level, the Preemptive EDD algorithm

is used with preemptions for each machine separately.

This algorithm is easy to implement and gives an optimal

solution to the problem 1 |prmp, 𝑟𝑗, online| L𝑚𝑎𝑥. In

general, the delay L𝑗 of job J𝑗 is defined as (𝑐𝑗 – d𝑗, 0).

Then we get L𝑚𝑎𝑥 = max {L𝑗}. For all plans in our

problems, L𝑚𝑎𝑥 must be satisfied, since none of the jobs

can be late. Moreover, the Preemptive EDD algorithm

creates a schedule without delays greedy scheduling and

therefore does not postpone the use of resources to the

future, when they may be needed by yet unknown jobs.

Preemptive EDD verifies that all already accepted jobs

whose due date is greater than the due date of the

incoming job will be completed before their due date.

The machine for job distribution can be determined

taking into account various criteria. They are

characterized by the type and amount of information used

to make the distribution decision.

Two levels of available information are

distinguished. At level 1, it is assumed that the job

execution time, machine speed and acceptance policy are

known. At level 2, in addition, the machine energy

efficiency and the energy consumed during the job

execution are known.

Table 1 provides detailed information about the

distribution strategies used in this work. The proposed

strategies can be divided into three groups:

1 – without knowledge of the system, without

information about jobs and resources;

2 – taking into account energy consumption, with

information about energy consumption;

3 – with information about the speed of machines.

The jobs are ordered by decreasing deadlines. To

execute them, jobs are taken from the head of the queue.

When a new job is released, it is placed in the queue

according to its deadline.

Table 1 – Job Distribution Strategies

Type Strategy Level Description

Knowledge

Free

Rand 1
Assigns work to a suitable machine chosen at random using uniform distribution over the

range [1…m]

FFit 1 Distributes work j to the first available machine capable of performing it

MLp 1 Distributes work j to the machine with the least load at time 𝑟𝑗: m𝑖𝑛{𝑛𝑖}

Energy

aware

Max-eff 2 Distributes work to the machine with the greatest energy efficiency {eff𝑖}

Min-e 2 Distributes work to the machine with the minimum total energy consumption at time 𝑟𝑗

MCT-eff 2
Allocates work j to the machine with the best balance between execution time and energy

efficiency, the execution time and the completion time of job k on machine i

Speed

aware

Max-seff 2 Distributes work j to the machine

Max-s 2 Distributes work j to the fastest machine: max {𝑠𝑖}

EDD is an optimal algorithm for minimizing delays

in a single-machine system. In our case, this corresponds

to minimizing the number of rejected jobs.

Since IaaS clouds are supposed to be a promising

alternative to data centers, it can be expected that the

workload transferred to clouds will have similar

characteristics to those transferred to real parallel and

grid systems.

It is well known that the distribution of jobs is

uneven in time and depends on the time of day and day

of the week.

Moreover, each individual log shows a different

distribution. In addition, they are recorded in different

time zones.

Therefore, it is necessary to normalize the used

workloads by shifting the workloads by a certain time

Control, Navigation and Communication Systems. 2024. No. 3 ISSN 2073-7394

198

interval in order to represent a more realistic situation.

The workloads are transformed in such a way that all

traces start on the same weekday and at the same time of

day.

For this purpose, all jobs until the first Monday at

midnight are deleted. Time zone normalization, profiled

time interval normalization, and invalid job filtering

should be considered.

Conclusions

Cloud computing provides advanced computing. The

paper proposes a modification of the IaaS cloud model. To

demonstrate the practicality and competitiveness of the

method, a comprehensive performance study is conducted

using simulation.

Workloads based on real production runs of

heterogeneous HPC systems are used to evaluate the

practicality of the scheduling method.

An online scheduling problem is considered. Jobs

arrive one after another, and after a new job arrives, the

scheduler must decide whether to reject this incoming job

or schedule it on one of the machines. The problem is

online, since the scheduler must solve it without

information about the next jobs.

REFERENCES

1. John J. Prevost, Kranthi Manoj Nagothu, Brian Kelley, and Mo Jamshidi, “Prediction of cloud data center networks loads using

stochastic and neural models”, 2011 6th International Conference on System of Systems Engineering, 12138393, 2011, doi:

10.1109/SYSOSE.2011.5966610.

2. S. Kianpisheh, and R. H. Glitho, “Cost-efficient server provisioning for deadline-constrained VNFs Chains: A parallel VNF

processing approach”, Proceeding of 2019 16th IEEE Annual Consumer Communications & Networking Conference, 2019.

doi: 10.1109/CCNC.2019.8651799.

3. N. Kuchuk, O. Shefer, G. Cherneva, and F. A. Alnaeri, “Determining the capacity of the self-healing network segment”,

Advanced Information Systems, vol. 5, no. 2, pp. 114–119, Jun. 2021, doi: 10.20998/2522-9052.2021.2.16.

4. Ye. Qiang, and W. Zhuang, “Distributed and adaptive medium access control for internet-of-things-enabled mobile networks”,

IEEE Internet of Things Journal, 2017, vol. 4, no. 2, pp. 446-460, doi: 10.1109/JIOT.2016.2566659.

5. G. Kuchuk, S. Nechausov, and V. Kharchenko, “Two-stage optimization of resource allocation for hybrid cloud data store”,

International Conference on Information and Digital Technologies, Zilina, 2015, pp. 266-271, doi: 10.1109/DT.2015.7222982.

6. H. Khudov, K. Tahyan, V. Chepurnyi, I. Khizhnyak, K. Romanenko, A. Nevodnichii, and O. Yakovenko, “Optimization of

joint search and detection of objects in technical surveillance systems”, Advanced Information Systems, 2020, Vol. 4, No. 2,

pp. 156-162, doi: 10.20998/2522-9052.2020.2.23.

7. S. Semenov, O. Sira, S. Gavrylenko, and N. Kuchuk, “Identification of the state of an object under conditions of fuzzy input

data”, Eastern-European Journal of Enterprise Technologies, Vol 1, No 4 (97), pp. 22-30, 2019, doi: 10.15587/1729-

4061.2019.157085.

8. S. Semenov, and Cao Weilin, “Testing process for penetration into computer systems mathematical model modification”,

Advanced Information Systems, Vol. 4, No. 3, pp. 133–138. 2020, doi: 10.20998/2522-9052.2020.3.19.

9. H. Attar, M.R. Khosravi, S.S. Igorovich, K.N. Georgievan, and M. Alhihi, “E-health communication system with multiservice

data traffic evaluation based on a G/G/1 analysis method”, Current Signal Transduction Therapy, 16(2), 2021, doi:

10.2174/1574362415666200224094706.

10. P. Franti, “Efficiency of random swap clustering”, Journal of Big Data, vol. 5, no. 13, 2018, pp. 1-29, doi: 10.1186/s40537-

018-0122-y.

11. A. Nechausov, I. Mamusuĉ, and N. Kuchuk, “Synthesis of the air pollution level control system on the basis of hyperconvergent

infrastructures”, Advanced Information Systems, vol. 1, no. 2, 2017, pp. 21–26. DOI: 10.20998/2522-9052.2017.2.04.

12. A. Kovalenko, H. Kuchuk, N. Kuchuk, and J. Kostolny, “Horizontal scaling method for a hyperconverged network”,

International Conference on Information and Digital Technologies 2021, IDT 2021, pp. 331–336, 9497534, 2021, doi:

https://doi.org/10.1109/IDT52577.2021.9497534.

13. H. Attar, M.R. Khosravi, S.S. Igorovich, K.N. Georgievan, and M. Alhihi, “Review and performance evaluation of FIFO, PQ,

CQ, FQ, and WFQ algorithms in multimedia wireless sensor networks”, International Journal of Distributed Sensor Networks,

16(6), June 2020, doi: https://doi.org/10.1177/1550147720913233.

14. N. Kuchuk, O. Mozhaiev, S. Semenov, A. Haichenko, H. Kuchuk, S. Tiulieniev, M. Mozhaiev, V. Davydov, O. Brusakova,

and Y. Gnusov, “Devising a method for balancing the load on a territorially distributed foggy environment”, Eastern-European

Journal of Enterprise Technologies, vol. 1(4 (121), pp. 48–55, 2023, doi: https://doi.org/10.15587/1729-4061.2023.274177

Received (Надійшла) 19.05.2024

Accepted for publication (Прийнята до друку) 21.07.2024

Оцінка продуктивності Інтернету хмарної моделі IaaS

Ю. О. Андрусенко, Д. О. Лисиця

Анотація . У статті пропонується метод модифікації хмарної моделі IaaS. Щоб показати практичність та

конкурентоспроможність методу, проведено комплексне дослідження продуктивності запропонованого методу за

допомогою моделювання. Для оцінки практичності методу планування використовуються робочі навантаження, що

ґрунтуються на реальних виробничих трасах гетерогенних систем. Розглядається проблема онлайн-планування. Роботи

надходять одна за одною, і після надходження нової роботи планувальник повинен вирішити, чи відхилити йому поточну

роботу, чи запланувати її на одній з віртуальних машин хмарної моделі IaaS. Проблема вирішується онлайн, оскільки

планувальник повинен вирішувати її без інформації щодо наступних робіт.

Ключові слова: IAAS, рівні обслуговування, розподіл, роботи.

https://ieeexplore.ieee.org/xpl/conhome/5958523/proceeding
https://doi.org/10.1109/SYSOSE.2011.5966610
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57057781300&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=56974534500&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=22034616000&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84954320080&origin=resultslist&sort=plf-f&src=s&sid=2e8aa855390d321478daae4a0c606142&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857057781300%29&relpos=5&citeCnt=1&searchTerm=
http://dx.doi.org/10.1109/DT.2015.7222982
file:///C:/Users/TheJackson/Downloads/Vol%201,%20No%204%20(97)
https://doi.org/10.15587/1729-4061.2019.157085
https://doi.org/10.15587/1729-4061.2019.157085
https://www.scopus.com/record/display.uri?eid=2-s2.0-85118325702&origin=resultslist&sort=plf-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85118325702&origin=resultslist&sort=plf-f
https://www.scopus.com/sourceid/5800173390?origin=resultslist
https://doi.org/10.2174/1574362415666200224094706
https://www.springerprofessional.de/journal-of-big-data/10796318
https://doi.org/10.1186/s40537-018-0122-y
https://doi.org/10.1186/s40537-018-0122-y
https://doi.org/10.20998/2522-9052.2017.2.04
https://www.scopus.com/authid/detail.uri?authorId=56423229200
https://www.scopus.com/authid/detail.uri?authorId=57057781300
https://www.scopus.com/authid/detail.uri?authorId=57196006131
https://www.scopus.com/authid/detail.uri?authorId=55364488000
https://www.scopus.com/record/display.uri?eid=2-s2.0-85112424686&origin=resultslist&sort=plf-f
http://dx.doi.org/10.1109/IDT52577.2021.9497534
http://dx.doi.org/10.1109/IDT52577.2021.9497534
https://doi.org/10.1177%2F1550147720913233
https://doi.org/10.1177%2F1550147720913233
https://doi.org/10.15587/1729-4061.2023.274177

