
Control, Navigation and Communication Systems. 2024. No. 2 ISSN 2073-7394

144

UDC 004.051:681.5 doi: 10.26906/SUNZ.2024.2.144

О. Skakalina, A. Kapiton

 National University “Yuri Kondratyuk Poltava Polytechnic”, Poltava, Ukraine

 COMPARATIVE ANALYSIS OF THE APPLICATION OF HEURISTIC

ALGORITHMS FOR SOLVING THE TSP PROBLEM

Abstract . The need to solve the traveling salesman problem (TSP) often arises when solving practically significant

optimization problems, such as problems in the field of economics, logistics in the widest range of applications, in chains

of technical programs. Quite often, the specifics of these problems require obtaining a solution that is as close to the exact

value as possible. But the TSP problem is NP-complex, that is, its exact solution can be obtained only in exponential time.

Therefore, it is not efficient to solve the TSP problem by the full search algorithm in the presence of a large number of

vertices of the graph. However, there are various heuristic algorithms that allow finding a rational solution to this problem

with a large number of vertices in a time acceptable for the relevant subject area. In this work, the problem of the traveling

salesman is defined as a mathematical programming task of finding the shortest path for the movement of a traveling

salesman (traveling salesman), the goal of which is to visit all the objects involved in the task in the shortest time and with

minimal costs. Appropriate adaptations of the heuristic algorithms, namely the genetic algorithm and the ant colony

algorithm, were developed in the MATLAB environment. A computational experiment was performed on the same input

sample, a comparative analysis of the performance of two heuristic algorithms, and the effectiveness of the use of heuristic

algorithms for solving NP-complex problems was proven.

Key words: genetic algorithms, NP-complex problem, TSP-problem, ant colony algorithm, MATLAB.

Introduction

At the current stage, many effective algorithms

have been developed for solving the traveling salesman

problem (TSP). However, the problem remains NP-

complete, which means that its solution in the general

case takes time, which grows exponentially with the

number of cities. Therefore, genetic algorithms are

usually used to solve the problem for large data sets.

The importance of the decision of the Central

Committee can be highlighted in the following areas:

 • Transport: TSP is widely used in transport

logistics to optimize freight transport routes. This allows

you to reduce transportation costs, increase the

efficiency of the use of vehicles and reduce the negative

impact on the environment.

• Sales: TSP is used to optimize product distribution

routes. This allows companies to reduce shipping costs,

improve customer service and increase sales.

• Production: TSP is used to optimize routes for

the delivery of raw materials and finished products at

enterprises. This allows companies to reduce production

costs, improve resource efficiency and reduce

production waste.

In addition, TSP is used in other areas, such as:

• Information technologies: TSP is used to

optimize data delivery routes in computer networks.

• Service: TSP is used to optimize customer

service routes.

• Entertainment: TSP is used in some games such

as chess and go.

• Computer science: TSP is used for testing

optimization algorithms. It is a good example of a

complex problem for which there are many effective

algorithms.

• Other spheres of activity: TSP is also widely

used in other spheres of activity. For example, it can be

used to optimize customer service routes, travel routes,

flight schedules, etc.

The development of technologies and the

globalization of the economy make the solution of TSP

even more urgent. For example, the growth of trade

volumes between countries requires the search for the

most efficient routes for the delivery of goods. And the

development of unmanned aerial vehicles opens up new

opportunities for the application of TSP in logistics. The

solution to this problem is of particular importance in

the current state of the country. Because calculations of

optimal flight routes of military UAVs are of decisive

importance.

The solution of TSP is a complex mathematical

problem. However, thanks to the development of

computer technologies, effective algorithms have been

developed that allow finding practically optimal

solutions for problems with a large number of cities.

1. Analysis of recent research and

publications

The traveling salesman problem is defined as a

mathematical programming task of finding the shortest

path for a traveling salesman (traveling salesman), the

goal of which is to visit all the objects involved in the

problem in the shortest time and with minimal costs. In

graph theory, it is finding a route that connects two or

more nodes, using the appropriate criterion of

optimality. The task of the wandering merchant is to

find the most optimal path that passes through the

marked cities at least once. In the conditions of the

problem, the indicator of the profitability of the route

(the cheapest, the shortest, the least time-consuming,

etc.) and the corresponding matrices of costs, distances,

etc. are indicated. As a rule, it is indicated that the path

should include each city of the route only once, under

this condition the choice is made between the so-called

Hamiltonian cycles. The traveling salesman problem

(TSP) is an NP-complex discrete optimization problem.

There are no fast polynomial algorithms for its solution.

In terms of graph theory, this problem is defined as

© Skakalina О., Kapiton A., 2024

ISSN 2073-7394 Системи управління, навігації та зв'язку. 2024. № 2

145

follows: the shortest path should be found that passes

through the defined nodes of the graph at least once

with a subsequent return to the node at the beginning of

the route [1].

The Traveling Salesman Problem (TSP) is a

combinatorial optimization problem that consists in

finding the shortest route that passes through all cities at

least once. Formally, the task of a traveling salesman

can be formulated as follows:

Given:
set of cities V={1,2,…,n};
distances between cities dij, where i,j∈V.

Find:
a route R passing through all cities V and having a

minimum length of:
i=1∑n−1di,i+1+dn,1=R∈Rmin(i,j)∈R∑dij
where R is the set of all routes passing through all

cities of V.

For the first time, the TSP problem was formulated

in 1930 and today it is one of the most studied

optimization problems in information and

communication technologies [2-8]. Despite the fact that

the problem is computationally complex (belongs to the

class of NP-complex), many heuristic and exact

algorithms are known, which were used to solve

practical problems.

 Research on solving the traveling salesman

problem can be conditionally divided into two

directions [2-8].

1. Development of accurate algorithms that work

fast enough only for small-sized problems;

2. Development of "non-optimal" or heuristic

algorithms that provide approximate solutions in

reasonable time.

One can also highlight the search for special cases

of the TSP problem ("sub-problems") for which either

better or exact heuristics are possible.

It is also important to distinguish between

symmetric and asymmetric TSP tasks. For the

symmetric case (usually called simply TSP), for all

distances in D the equality dij = dji holds, that is, it does

not matter whether we move from i to j or vice versa,

the distance is the same. In the asymmetric case (called

ATSP), the distances are not equal for all pairs of cities.

Problems of this kind arise when we are not dealing

with spatial distances between cities, but, for example,

with the cost or time required to travel between places,

where the price of a plane ticket between two cities may

be different. In this case, we will consider a symmetric

version of the TSP problem.

It is quite obvious that the task can be solved by

going through all the travel options of the traveling

salesman and choosing the optimal one. The thing is

that the number of possible routes N grows very quickly

with the number of cities to visit n N=n!.

For example, for n = 100, the number of options

will be represented by a 158-digit number. A modern

computer capable of processing a million operations per

second will struggle with the task for about 144 years.

It is considered proven that there is no exact TSP

solution algorithm that has polynomial complexity (that

is, has an asymptotic estimate of the algorithm

execution time T(n) = O(nα)) of the complexity of

execution. Therefore, the TSP problem for any large n

becomes almost unsolvable for exact algorithms.

 TSP is a problem that is hard for NP and is so

easy to describe and so hard to solve. In this case, you

should give up trying to find an exact solution to the

traveling salesman's problem and focus on finding an

approximation - even if not optimal, but at least close to

it. Due to the great practical importance of the task,

approximate solutions will also be useful [2-8].

The Evolutionary Algorithm (EA) is an algorithm

first proposed by Charles Darwin in 1859. It provides

solutions for various optimization problems. It copies

the process of evolution that occurs in nature, i.e.

mutation, recombination and natural selection. GA

(Genetic Algorithm) is a type of evolutionary algorithm.

GA provides a solution to a problem in the form of

strings of numbers and applies operators such as

mutation and recombination. It starts from the seed and

finds the most appropriate generation of the population

using these operators.

The ACO (Ant Colony Optimization) algorithm is

also a heuristic algorithm first discovered by Marco

Dorigo that provides an optimal solution by simulating

the way ants find food. ACO is a type of AI (swarm

intelligence) technique.

The PSO (Particle Swarm) algorithm, first

discovered by Kennedy and Eberhart, also provides an

optimal solution to the problem and is inspired by flocks

of birds, fish, and herds of animals. This mimics how

they find their food environment and follows an

information sharing approach.

In addition to presenting TSP as a combinatorial

optimization problem, TSP can also be formulated as a

theoretical problem of graph theory.

 Let us present TSP in the formulation of the graph

theory problem. Graph theory defines the problem as

finding the Hamiltonian cycle with the least weight for a

given complete weighted graph. This kind of problem

formulation is widespread in engineering applications

and some industrial problems such as machine planning,

cellular manufacturing and frequency assignment

problems can be formulated as TSP.

Let a weighted graph G = (V, E) be given, in

which cities correspond to the set of vertices V = {1, 2,.

. . , n} and each edge ei ∈ E has a corresponding weight

wi representing the distance between the cities it

connects. If the graph is not complete, missing edges

can be replaced by edges with very long distances.

The goal of solving the TSP problem is to find a

Hamiltonian cycle, that is, a cycle that visits each node

on the graph exactly once, with the smallest possible

weight for the given graph. This formulation naturally

leads to procedures involving the search for minimal

tree frames for a given graph.

TSPs can also be represented as integer and linear

programming programs. The formulation of integer

programming (IP) is based on the assignment problem

with the additional constraint of no subtours [9].

The branch-and-bound method is a discrete

optimization algorithm used to find the optimal solution

to a problem in which only discrete variable values are

possible. The method works by building a decision tree,

Control, Navigation and Communication Systems. 2024. No. 2 ISSN 2073-7394

146

in which each node represents a possible solution to the

problem. The branch-and-bound method starts with the

root node of the tree, which represents the initial

solution to the problem. Then, the algorithm uses a cut-

off criterion to discard nodes that cannot contain an

optimal solution. The cutoff criterion is a function that

estimates the probability that a node contains an optimal

solution [10].

If the node is not discarded, then the algorithm

branches it into two new nodes, which represent two

possible options for continuing the solution of the

problem. Then, the algorithm repeats this process for

each of the new nodes.

The branching process continues until an optimal

solution to the problem is found or until the entire

decision tree is explored.

The branch-and-bound method is an effective

algorithm for solving many discrete optimization

problems. However, it may not be effective for

problems with very large decision trees [10]. Here is an

example of how the branch-and-bound method can be

used to solve the traveling salesman problem. The task

of the traveling salesman is to find the shortest route

that passes through all the cities visited by the traveling

salesman.

To solve this problem, we can build a decision tree

in which each node represents a possible route of the

traveling salesman. Then, we can use a cut-off criterion

to discard nodes that cannot contain an optimal route.

One of the cutoff criteria that can be used for the

traveling salesman problem is the following. If the

length of the route from a node to its parent node is

greater than or equal to the length of the shortest known

route, then the node can be discarded.

This cutoff criterion works because if the length of

the route from a node to its parent node is greater than

or equal to the length of the shortest known route, then

that node cannot be a continuation of the shortest known

route. By using this cutoff criterion, we can limit the

size of the decision tree to be examined. This can

significantly improve the efficiency of the algorithm.

The branch-and-bound method is used to solve

many discrete optimization problems, including:

▪ Task of a traveling salesman;

▪ Maximum flow problem;

▪ Placement problem;

▪ Timetable problem;

▪ Backpack problem;

▪ Assignment task.

The branch-and-bound method is a powerful tool

for solving discrete optimization problems. It can be

used to solve a wide range of problems, including

problems with very complex constraints [10]. Dijkstra's

algorithm is a widely used algorithm for finding the

shortest path in a weighted graph from one vertex to all

others. It was developed by Edsger Dijkstra in 1959 and

is characterized by its simplicity and efficiency.

Working principle:

1. Input data:

A weighted graph G = (V, E), where V is the set of

vertices and E is the set of edges, each edge is assigned

a weight (price).

The initial vertex s from which to find the shortest

paths.

2. Initialization:

For each vertex v in G, we store two values:

dist[v]: Estimated distance from initial vertex s to

v (initially infinite except dist[s] = 0).

prev[v]: predecessor of v on the shortest path

(None initially).

3. The main cycle:

• We select an unvisited vertex v with the

minimum dist[v] score.

• Mark v as visited.

• For each unvisited neighbor w of vertices v:

• new_dist = dist[v] + weight(v, w): we calculate

the estimated distance to w through v.

• If new_dist < dist[w]: update the estimated

distance dist[w] and the predecessor prev[w] to v.

4.Output:

dist[v] contains the distance from the starting

vertex s to each vertex v.

prev[v] allows you to recover the shortest path

from s to v, moving along the predecessors.

Advantages:

▪ Ease of implementation.

▪ Guaranteed to find the shortest path.

▪ Effective for graphs with non-negative weights.

▪ Disadvantages:

▪ Inefficient for graphs with large negative

weights.

▪ Cannot find all shortest paths if the graph has

cycles with negative weights.

▪ Algorithms of combinatorial optimization are

classified by such an indicator as the accuracy of

obtaining a solution.

2. Statement of the research problem

Genetic algorithms are a family of computational

models inspired by evolution. These algorithms work on

the principle of encoding a potential solution to a

specific problem based on a simple chromosomal data

structure, by recombining these structures while

preserving critical information. Genetic algorithms are

often considered as an optimizer of functions, although

the range of problems of their application is much

wider. The implementation of the genetic algorithm

begins with the formation of a population of (usually

random) chromosomes. Then these structures are

evaluated and their reproductive capabilities are

identified, that is, those chromosomes that are the best

solution to the target problem. Thus, from generation to

generation, useful traits spread throughout the

population, and bad ones gradually disappear. Thanks to

the crossing of the most adapted individuals, more

promising areas of the search space are inherited.

Eventually, the population will converge to the optimal

solution to the problem. GA finds approximate optimal

solutions in a fairly short time, which is an obvious

advantage of this method. Thus, the genetic algorithm is

a heuristic search algorithm that is used to solve

optimization and modeling problems by randomly

selecting, combining, and varying the parameters sought

using mechanisms that resemble biological evolution.

ISSN 2073-7394 Системи управління, навігації та зв'язку. 2024. № 2

147

"Genetic" algorithms began to be called later, until in

1975 Holland called them reproductive plans and

considered them primarily as adaptation algorithms. But

the shift in emphasis in the interpretation of the concept

of "adaptation", which the author talks about in the

preface of 1992, very accurately conveys the state of

ambiguity, trying, on the one hand, to give a fairly

general and uncontroversial concept of adaptation, and

on the other hand, to distinguish between the concepts

of adaptation and optimization, adaptation and

evolution, adaptation and learning.

Genetic algorithms are search algorithms that are

based on the concepts of natural selection. In nature,

individuals with better survival traits exist for a longer

period of time, as they have a better chance of

producing offspring with similar genetic material. Over

time, the entire population will consist of a large

number of genes from superior individuals and a smaller

number from weaker ones. The mistake of older

theorists, such as Jean-Baptiste Lamarck, was that the

environment influenced the individual personality. That

is, the environment will force the individual to adapt to

it. The molecular explanation of evolution proves that

this is biologically impossible. The species does not

adapt to the environment, rather, only the strongest

survive. This is how natural selection works in genetic

algorithms. The genetic algorithm differs from other

search methods in that it searches among a set of points

and works with a set of parameters, rather than the

parameter values themselves. It also uses objective

function information without any gradient information.

Whereas traditional methods use gradient information.

Because of these features of the algorithm, they are

applied to various optimization functions, parameter

estimation, and machine learning programs [11].

At this stage of development, there is no specific

strategy for building a solution, there is a huge number

of individual implemented algorithms that are not very

similar to each other. However, the operation of all

these algorithms can be presented in the form of a

traditional scheme of operation of these algorithms (Fig.

1). There can be several criteria for stopping the search

for a solution: time frames, the number of created

populations, and a decrease in the improvement of the

fitness function compared to previous iterations.

The potential of genetic algorithms is difficult to

overestimate. When it is almost impossible to find a

solution by conventional methods, they are the obvious

way out of the situation. In various forms, genetic

algorithms are applied to scientific and technical

problems. They can be used in building computational

frameworks such as state machines and sorting networks.

They are often used in the design of neural networks and

robot management, in modeling the development of

processes in various subject areas, in game strategies,

scheduling, logistics, cutting tasks, in the development of

artificial life, and in many other areas [12]. However, the

most popular application of genetic algorithms is the

optimization of multiparameter functions.

So, for example, experiments are being conducted

to create robots working in a team for the purpose of

demining the territory. It is based on a multilayer neural

network, which is directly responsible for controlling

the robots and, in addition, transmits and receives

signals to other team members. In other words, in

addition to parametric optimization, the hybrid

neuromodel performs an implicit creation of a

communication language between robots. All

parameters of the neural network are optimized using

genetic algorithms. The results of such hybridization of

various methods and algorithms of artificial intelligence

show a clear advantage of a team of sapper robots that

exchange information with each other over robots that

operate without any communication. As a result, this

technology can save many human lives in the long run,

and hopefully the sapper's profession will not be so

relevant.

In recent years, the scientific direction of

Natural Computing has been intensively developed,

which combines mathematical methods that incorporate

the principles of natural decision-making mechanisms.

These mechanisms ensure the efficient adaptation of

flora and fauna to the environment for millions of years.

One of these methods is ant algorithms, which

are based on the principles of self-organization of an ant

colony. Despite the disjointed behavior of each of its

representatives, it forms a highly organized system

consisting of a large number of "agents" - ants, and

thanks to this, it is able to solve complex tasks that

exceed the capabilities of each individual element.

Studying the behavior of an ant colony is

interesting for computer science because it provides

insight into the disjoint organization, which is very

useful for solving complex optimization problems.

 The idea behind the ant algorithm is to model

the behavior of ants related to their ability to find the

shortest path from the anthill to the food source and

adapt to changing conditions by finding a new shortest

path. When moving, an ant marks its path with a

pheromone, and this information is used by other ants.

This is the basic rule of conduct for each representative

of the colony in case the old route becomes unavailable.

If an ant encounters an obstacle while moving, it will go

around it to the left or right with equal probability. The

same will happen on the way back. However, those ants

that choose the shortest path will go through it faster

and in a few moves it will be stronger. If we model the

process of such behavior on a graph, the edges of which

are all kinds of movement paths, then for some time the

path most enriched with pheromone will be the shortest,

which will solve the problem [13].

3. Basic material and results

The first version of the ant algorithm was proposed

by Marco Dorigo in 1992. This scientist, in fact,

proposed a mathematical model of the behavior of ants

looking for paths from a colony to a food source and is

metaheuristic optimization.

An ant colony is considered as a multi-agent

system in which each agent (ant) functions

autonomously according to very simple rules. In

contrast to the almost primitive behavior of agents, the

behavior of the entire system turns out to be surprisingly

reasonable [14].

Control, Navigation and Communication Systems. 2024. No. 2 ISSN 2073-7394

148

The basis of the "social" behavior of ants is self-

organization - a set of dynamic mechanisms that ensure

the achievement of a global goal by the system as a

result of low-level interaction of its elements. A

fundamental feature of such interaction is the use of

only local information by system elements. Self-

organization is the result of the interaction of the

following five components:

a. randomness;

b. multiplicity;

c. positive feedback;

d. negative feedback;

e. objective function.

These components are the key properties of the ant

algorithm. Let us consider them in more detail using the

example of the movement of ants for food from an

anthill (Fig. 1) [14].

Fig. 1. Movement of ants for food

When an ant moves from an anthill (point F) to

food (point N), pheromone is deposited throughout the

entire path (obviously, the shortest path is marked by

the green arrow – (a)). At the same time, the greater the

density of the pheromone, the shorter the path,

accordingly, the ant will leave less pheromone on a long

section of the path. The longer the path, the faster the

pheromone evaporates. Over time (if an approximately

equal number of ants move along all sections), the ants

will leave the most pheromone on the shortest section of

the path. Thus, most ants will choose the shortest path -

that is, they will leave even more pheromone on it,

which will reduce the probability of moving along other

routes (although this probability will remain, as you can

see, one ant still moves along a different part of the

path).

Accident. From the above example, it is possible

to reveal the random nature of the movement of ants.

Indeed, at the first stage, ants focus on all kinds of

options for constructing their path. Even when the

density of the pheromone helps to choose the optimal

(shortest) route, there remain "distrustful individuals"

who do not stop trying to find more optimal routes.

Multiple use. Of course, with one ant or even

dozens of individuals, it is unlikely to be able to choose

the optimal path. It takes many, many attempts to find

the shortest path or at least warn others not to go in that

direction. A pheromone and positive feedback serve as

such a warning [14].

Positive feedback. Zoologists call it stigmergy.

Stigmerges are a time-dispersed type of interaction,

when one subject of interaction changes some part of

the environment, and others use information about its

state later, when they are in its vicinity. Thus, positive

feedback is a kind of "collective memory" based on

pheromone. Using this "memory" (based on trial and

error) you can find the right solution.

Negative feedback. Eventually, the pheromone

evaporates, which allows the ants to adapt their

behavior to changes in the external environment. The

distribution of pheromone in the space of movement of

ants is a kind of dynamic variable of the global memory

of the anthill. Any ant at a fixed moment in time can

perceive and change only one local cell of this global

memory [15].

Objective function. The most important element of

the algorithm is the objective or fitness function to be

optimized (for an ant, this is the shortest route). But you

can successfully solve other similar tasks. Do not forget

that the ultimate goal of the algorithm is optimization

(in the language of mathematics, it means finding a

global or acceptable maximum or minimum). The

algorithm is heuristic, that is, it does not guarantee an

exact solution, but only an approximate or acceptable

one.

Condition of the problem. It is necessary to find

the shortest route that starts in the starting city and ends

in it. The route must pass through all cities only once.

The ant algorithm will be implemented to find the

shortest route around all regional centers of Ukraine, i.e.

25 cities, the beginning of the route is in the city of

Vinnytsia.

The developed algorithm will work with city

coordinates and calculate results in degrees. The ant

algorithm was programmed in the MATLAB system

[16]. For the task with 25 regional centers of Ukraine,

the algorithm without elite ants after 300 iterations

found the optimal route with a length of 5216.18

kilometers in 14.16 seconds only in one case out of five.

The solution can be improved by simply increasing the

number of iterations to 1-2 thousand. The graph of the

optimization of the objective function for each iteration

is shown in Fig. 2.

The conducted experiments show that the

population of solutions never degenerates to one

common route for all ants. On the contrary, the

algorithm continues to synthesize new, possibly better

solutions. So, in any city for an ant there are several

promising alternatives for continuing the route.

information with the results is given in Table 1.

Table 1 – Performance results of the ant algorithm

with different iterations

Iterations
Path in

degrees

Distance

in km

Algorithm

operation time

100 50.85 5660.68 6.36 s.

200 49.51 5511.37 9.18 s.

300 46.86 5216.18 14.16 s.

ISSN 2073-7394 Системи управління, навігації та зв'язку. 2024. № 2

149

Fig. 2. Optimal current solutions of the ant algorithm

The condition of the problem for the operation of

the genetic algorithm remains exactly the same as for

the ant colony algorithm. It is necessary to find the

shortest route that starts in the starting city and ends in

it. The route must pass through all cities only once. It is

necessary to go around 25 regional centers of Ukraine.

The selection process is carried out by creating

chromosomes that have a low target function, a high

probability of being selected, or a high probability

value. The selection process used in this algorithm is

roulette wheel selection.

After the selection process, the next process is the

crossover process. The chromosomes used as parents

are chosen randomly, and the number of chromosomes

that undergo crossover is affected by the crossover rate

parameter.

The mutation process used in this algorithm is

reverse mutation. This mutation process is carried out

by breaking the chromosomes at two points of

intersection, and the subchromosomes recombine in the

reverse order.

The number of chromosomes that undergo

mutations in the population is determined by the

mutation rate parameter.

The structure of chromosomes. Genes are part of a

chromosome, where one chromosome consists of

several interconnected genes. Chromosomes represent

individuals, in other words, chromosomes are the same

as individuals.

In the traveling salesman problem, the

chromosomes formed contain genes that represent the

serial numbers of all existing cities. The number of

genes in each chromosome is equal to the number of

cities. Each city serial number can appear in a

chromosome only once.

 The initial initialization of the population is

carried out to obtain the initial solution of the genetic

algorithm problem. This initialization is performed

randomly for as many chromosomes/populations as

desired. For example: each of the 25 cities has its own

coordinates, you need to make a path from them, each

city can be used once. So, the initial population with 3

chromosomes and 25 genes can look like this:

Chromosome[1]=[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 25];

Chromosome[2]=[23 8 11 20 14 22 12 19 7 1 24
10 2 18 9 17 4 6 21 3 5 25 15 13 16];

Chromosome[3]=[21 8 25 12 10 6 20 17 24 9
19 23 11 5 14 3 2 22 7 16 18 13 4 1 15].

So, the above chromosomes represent several

possible ways of traveling through cities by a traveling

salesman. This path is the structure of chromosomes.

The implemented genetic algorithm for the task

with 25 regional centers of Ukraine after 300 iterations

found the optimal route with a length of 5146.57

kilometers in 2.44 seconds only in one case out of five.

In this case, the solution did not improve after 300

iterations, so there is no point in putting more. The

graph of the optimization of the objective function for

each iteration is shown in Fig. 3. The conducted

experiments show that the solution is at most 300

iterations away and usually it is the same. The algorithm

does not continue to synthesize new, possibly better

solutions, provided that they exist at all. Full

information with results is given in Table 2.

Table 2 – Genetic algorithm results with different iterations

Iterations
Path in

degrees

Distance in

km

Algorithm

operation time

100 46.9 5220.35 1.7 с.

200 46.24 5146.57 2.14 с.

300 46.24 5146.57 2.44 с.

Fig. 4 shows the path found in 300 iterations,

although the path found in 200 iterations is also a quasi-

optimal solution. So, according to the route of the best

results, we have the following sequence (chromosome)

of visits to distribution sites (Table 3).

Control, Navigation and Communication Systems. 2024. No. 2 ISSN 2073-7394

150

Fig. 3. Best current genetic algorithm solutions

Fig. 4. The optimal path according to the genetic algorithm

Table 3 – The best of the traveling salesman's routes found

№ From which city to depart Which city to go to

1 Vinnitsa Odesa

2 Odesa Mykolaiv

3 Mykolaiv Kherson

4 Kherson Simferopol

5 Simferopol Zaporizhzhia

6 Zaporizhzhia Dnipro

7 Dnipro Donetsk

8 Donetsk Luhansk

9 Luhansk Kharkiv

10 Kharkiv Sumy

11 Sumy Poltava

12 Poltava Kropyvnytskyi

13 Kropyvnytskyi Cherkasy

14 Cherkasy Chernihiv

15 Chernihiv Kyiv

16 Kyiv Zhytomyr

17 Zhytomyr Rivne

18 Rivne Lutsk

19 Lutsk Lviv

20 Lviv Uzhhorod

21 Uzhhorod Ivano-Frankivsk

22 Ivano-Frankivsk Ternopil

23 Ternopil Chernivtsi

24 Chernivtsi Khmelnytskyi

25 Khmelnytskyi Vinnitsa

In order to draw a conclusion about the

effectiveness of the ant colony algorithm and the genetic

algorithm, it was decided to compare their work with

each other to solve the same task of a traveling salesman

to visit all regional centers of Ukraine.

A comparison of the number of iterations, the

length of the best route, and the running time of the

algorithm is shown in Table 4.

Table 4 – Comparison of the work of genetic

and ant algorithms

Number

of

iterat-

ions

Ant algorithm Genetic algorithm

Best

route

length

(km)

Algorithm

operation

time

Best

route

length

(km)

Algorithm

operation

time

100 5660.68 6.36 с. 5220.35 1.7 с.

200 5511.37 9.18 с. 5146.57 2.14 с.

300 5216.18 14.16 с. 5146.57 2.44 с.

Conclusions

The results of the algorithms show that the ant

algorithm takes more time to solve the problem. The ant

algorithm can find solutions for 25 cities in 300

iterations.

ISSN 2073-7394 Системи управління, навігації та зв'язку. 2024. № 2

151

This is due to the fact that the results of the ant

colony algorithm converge longer to a certain value

(minimum solution) compared to the genetic algorithm.

In this study, the genetic algorithm can provide a

better solution because the genetic algorithm in each run

presents a better average optimal solution. If the

population is large, this will require many iterations. On

average, each run of the genetic algorithm

implementation process presents a better solution than

the ant one, where in each run the solution graph of the

genetic algorithm salesman problem is relatively stable

with low solution fluctuations compared to the ant

colony algorithm.

Both algorithms can be classified as good and able

to present an optimal solution to the traveling salesman

problem, which is sufficient for most practical

problems.

The simulation results for a 25-city path show the

optimal travel route by choosing the best path without

intersecting routes.

REFERENCES

1. The Traveling Salesman Problem: A Computational Study, D.L. Applegate, R.E. Bixby, V. Chvátal & W.J. Cook (2006).

[Electronic resource]. URL: https://www.math.uwaterloo.ca/tsp/book/contents.html (Date accessed 11/01/2023).

2. Mathematical methods of operations research: a textbook/ E. A. Lavrov, L. P. Perhun, V. V. Shendryk and others. – Sumy:

Sumy State University, 2017. – 212 p.

3. Hassan M. H. Mustafa, Ayoub Al-Hamadi, Mohamed Abdulrahman, Shahinaz Mahmoud, Mohammed O Sarhan On

Comparative Analogy between Ant Colony Systems and Neural Networks Considering Behavioral Learning Performance//

Journal of Computer Sciences and Applications. 2015, vol. 3 No. 3, 79-89.

4. Biological bases of ant colonies - [Electronic resource]. URL: http://posibniki.com.ua/post-prikladni-sistemi-kolektivnogo-

intelektu-swarm-intelli-gence (Date of application 10/15/2023).

5. Rukundo, O., Cao, H. Advances on image interpolation based on ant colony algorithm. SpringerPlus 5, 403 (2016) -

[Electronic resource]. URL: https://springerplus.springeropen.com/articles/10.1186/s40064-016-2040-9

6. Korte B., Vygen J. Combinatorial Optimization: Theory and Algorithms (Algorithms and Combinatorics) 6th ed., New York,

2018, 455 p.

7. Divya M. A Comparison of Ant Colony Optimization Algorithms Applied to Distribution Network Reconfiguration//

International Journal of Engineering Research & Technology, Volume 3, Issue 01, 2016. – pp. 1-4.

8. Hahsler M., Hornik K. TSP – Infrastructure for the Traveling Salesperson Problem// Journal of Statistical Software,

December 2007, Vol. 23, Issue 2, 2007. – pp. 1-21.

9. Genetic algorithms. Key concepts and implementation methods. znannya.org : website. URL:

http://www.znannya.org/view_ga_general (access date: 10/3/2023).

10. Sathya N., Muthukumaravel A. A review of the Optimization Algorithms on the Traveling Salesman Problem. Indian Journal

of Science and Technology, Vol 8(29), DOI: 10.17485/ijst/2015/v8i1/84652, November 2015.

11. Genetic Algorithm Tom V. Mathew Assistant Professor, Department of Civil Engineering, Indian Institute of Technology

Bombay, Mumbai-400076.

12. Ivanova E.A. "The possibility of applying genetic algorithms in solving scheduling problems" // Colloquium-journal. 2018.

No. 3-1 (14). P. 36-38.

13. Dorigo, M. Ant algorithms and stimergy / M. Dorigo, E. Bonabeau, G. Theraulaz // Future Generation Computer Systems. —

2000. — No. 16. — P. 851-871.

14. Chivilikhin D., Ulyantsev V. Inferring Automata-Based Programs from Specification With Mutation-Based Ant Colony

Optimization / Proceedings of the 16th Genetic and Evolutionary Computation Conference companion. - ACM, 2014. - p. 68.

15. Alexandrov A., Sergushichev A., Kazakov S., Tsarev F. Genetic Algorithm for Induction of Finite Automation with

Continuous and Discrete Output Actions / Proceedings of the 2011 GECCO Conference Companion on Genetic and

Evolutionary Computation. NY. : ACM. 2011, p. 778.

16. Getting Started with MATLAB. Version 6.5. The MathWorks, Inc., 2002.

Received (Надійшла) 06.02.2024

Accepted for publication (Прийнята до друку) 03.04.2024

Порівняльний аналіз застосування евристичних алгоритмів

для розв’язання задачі TSP

О. В. Скакаліна, А. М. Капитон

Анотація . Необхідність вирішення задачі комівояжера (TSP) часто виникає при вирішенні практично значущих

оптимізаційних задач, таких як задачі в області економіки, логістики в найширшому діапазоні застосувань, в ланцюгах

технічних програм. Досить часто специфіка цих задач вимагає отримання рішення, максимально наближеного до

точного значення. Але задача TSP є NP-складною, тобто її точний розв’язок можна отримати лише за експоненціальний

час. Тому розв’язувати задачу TSP за алгоритмом повного пошуку за наявності великої кількості вершин графа

неефективно. Однак існують різноманітні евристичні алгоритми, які дозволяють знайти раціональне рішення цієї задачі

з великою кількістю вершин за час, прийнятний для відповідної предметної області. У даній роботі задача комівояжера

визначається як задача математичного програмування знаходження найкоротшого шляху руху комівояжера, метою якої

є відвідування всіх об’єктів, задіяних у задачі в найкоротший термін і з мінімальними витратами. Відповідні адаптації

евристичних алгоритмів, а саме генетичного алгоритму та алгоритму мурашиної колонії, розроблені в середовищі

MATLAB. Проведено обчислювальний експеримент на вхідній вибірці, проведено порівняльний аналіз продуктивності

двох евристичних алгоритмів і доведено ефективність використання евристичних алгоритмів для розв’язування NP-

комплексних задач.

Ключові слова: генетичні алгоритми, NP-комплексна задача, TSP-задача, алгоритм мурашиної колонії,

MATLAB.

