Control, Navigation and Communication Systems. 2024. No. 2

ISSN 2073-7394

UDC 004.9

Mykhailo Hulevych

doi: 10.26906/SUNZ.2024.2.074

National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

CIDER : ASSISTED AUTOMATION TOOL FOR C++ LIBRARIES TESTING

Abstract. Software testing is one of the most important parts of a product development lifecycle (PDL). Companies face
significant risks associated with program failures, including financial and reputational ones, having an interest in investing
time and money in new testing and quality assurance practices. The programs written in C++ are known as high performant,
but complex due to the language specifics. At the same time automated tools that are available mostly for GUI programs can't
help with native modules regression testing. Thus, even partial automation of such processes can have a positive effect on PDL
in terms of regression testing effectiveness. The article considers a testing technique of recording and playback of program
execution on the component level. The proposed tool generates testing scenarios during the execution of a program, giving the
ability to perform manual testing and extend the automated component tests execution database. The experiments showed that
such scenarios' code coverage results are at a high level and tend to improve when applying optimization algorithms.

Keywords: test automation, script generation, regression testing, C++, optimization, harmony search, code coverage.

Introduction

The modern world has high security challenges
making companies invest in security measures while
developing complex systems. The software written in
C++ consists of a high number of components interacting
with each other via a public interface. In general, such
components may exchange data not only in the same
process but on different machines, which adds additional
complexity to testing. Isolation of a component removes
redundant complexity and aims to verify that each part of
the whole behaves as expected. In addition, the
component tests are usually written in scripting
languages other than the original component under test
by automation test engineers to aim for the problematic
branches of execution and specific input data.

At the same time, automatic tests generation for
C++ programs question has been a topic of interest in
recent years. While automated unit testing tools and
techniques have been widely studied and applied in
software engineering, including for languages like Java
and Python, the unique characteristics of C++ present
additional challenges. While significant progress has
been made in automatic unit test generation for C++
programs, challenges remain, including the handling of
complex language features, such as templates, macros,
and pointer arithmetic, as well as the need to balance test
effectiveness, efficiency, and scalability, which one of
the key parts of C++ language philosophy.

Recent publications. CIRTUS [1] automated unit
testing tool for C++ programs generates test suites for unit
testing based on source code analysis and method sequences
generation, improves the code coverage by applying the
libfuzzer to change the values of generated method’s
arguments. The tool has shown an ability to produce the test
suites that achieve a high value of branch and statement
coverage (up to 95% on one of the experimental setups).

KLOVER [2] uses symbolic execution technique for
test inputs generation achieving high structural coverage
of the program under test. The C++ program is compiled
into the LLVM [3] bytecode and interpreted by KLOVER
tool collecting statistics and sanity information. The
experiments were made on 4 industrial programs up to 3k
LOC and showed positive results regarding the manual

testing. Another tool named PAULS [4] is oriented on Java
test case generation. It uses dynamic analysis of program
execution to infer a call sequence model with static
analysis of call relations based on argument dependence.
The study is aimed at existing unit tests optimization in
terms of code coverage, test case source code size and
redundant cases search. It showed significant code
coverage improvement on 6 open-source libraries,
improving the existing unit test suites.

At the same time, alternatives suffer from invalid
method call sequences and irrelevant input data
generation, producing a high tests fault rate.

CIDER

The paper introduces a new approach of automatic
testing scenarios generation named CIDER. Instead of
earlier mentioned tools it’s aimed at a script-based testing
approach of C++ programs code base. The generated
scripts can be used in component test suites for industrial
projects. CIDER uses a test recording approach, meaning
that output scenarios are first executed right from a target
application that uses the library under test. The generated
method calls sequences are relevant to the program
execution and possibility of faulty call sequences without
meaning is omitted. Then scripts are optimized to achieve
higher code coverage and saved in the test suite.

In the next sections, we will overview a general
script generation process, as well as valuable
implementation details of CIDER tool. The experimental
setup includes two C++ open-source libraries: Hjson [5]
and Pugixml [6]. The following research questions will
be answered:

RQ1: Are CIDER-recorded scripts executions
comparable in terms of code coverage with the original
test suites executions?

RQ2: Can generated scenarios be optimized in
terms of code coverage?

Process overview

The formal CIDER usage process is shown in Fig. 1
and consists of:

1. Parsing target library T header files into an
abstract syntax tree (AST) for detecting all functions and
parameters with corresponding types.

74

© Hulevych M., 2024



ISSN 2073-7394

CucreMu ynpaBiIiHHsI, HaBiraiii Ta 3B's3ky. 2024. Ne 2

2. Generation of C++ source wrapper files
containing special hooks for function calls data collection.

3. Compile and build the T' library.

4. Using the AST generate the (*.swig)
configuration files for SWIG [7] generator for script
bindings generation.

5. Call SWIG generator to get SWIG C++ source
files with lua scripting language bindings.

6. Compile and build the L library from sources
generated on stage 6, which is used by lua interpreter I
for the generated scripts execution.

7. Inject T' library into the target application and
perform executable running in order to get session output
data for script S generation.

8. Generate lua script S.

9. Execute S on luainterpreter | with imported library
T and process output library coverage information.

10. Optimize script S using the harmony search
metaheuristic algorithm.

11.Save the optimized version S’
regression tests suite.

into the

C++
Header file SWIG

config
CIDER Tool file
C++
SWIG
Wrapper

(=

C++
Source
Wrapper

(5
(5

Recorder
Library

Player
Library

Fig. 1. Formal CIDER process overview

Data model

Every program execution is represented as a test
scenario in our model. The test scenario consists of a
sequence of method calls with corresponding arguments.

Each argument has one of the supported C++ types
and value, recorded during an execution. The supported
argument types by CIDER generally are:

e  Strings (std::string, const char*, etc.).

Integers (int, short, unsigned int, etc.).
Booleans.

Doubles (float, double).

User Data (enums, classes, structs, etc.).

After scenario data is recorded it can be either
mutated or generated into lua script [8]. Example of the
recorded data chunks are shown in Fig. 2.

’ nil; ‘do’; obj1; [1, ‘arg1’] ‘

’ obj; ‘reverse’ ; nil ; [1, 3, false] ‘

’ obj; “free’; nil; [] ‘

’ nil; ‘make’; obj2; [obj1, 0.44, ‘name’] ‘

1
1
Lu obj2; 'clean’; nil; [45] ‘

Fig. 2. Recorded program execution data example

Script optimization

An idea from a classic harmony search optimization
algorithm (HS) was taken, which was first introduced by Z.
Geem in 2001 [9]. The reason why it was chosen is that
harmony search as a metaheuristic algorithm was compared
to others and shown that it’s more successful. Also, it's less
sensitive to chosen parameters [10]. The task is formulated
as finding the maximum value of the coverage function of
the given script. The scenario S is represented as sequence
of function calls, according to a formula:

S ={F,F,..,E}, neN, 1)
where n is the number of calls.
The F; can be either a class method call or a free
function call having m; arguments count:

F,=F (xl, X5, ...,xmj), m; € N. 2)

Then, the script S; can be represented as a function
that takes all the arguments from all its constituent
functions.

n
S =S50y, x5, 0, x), L = Z m;. 3
=1

The objective function for HS algorithm can be
represented as:
C(S) = C(xq, X, s Xp) . 4
The number of the generated scenarios that can be
kept in memory equal to k — harmony memory size. The
harmony memory H,,, consists of all generated scenarios’
arguments and looks like this:

X11 X127t Xqp
X221 X22 v Xy

Hy = : : . . (5)
Xk1 Xkz2 0 Xkl

where x,; — arguments of script Sy, i € [1: 1].

The harmony from the memory is used with 6
probability - memory consideration rate. During a new
harmony generation, each argument can be mutated with
¢ mutation rate. The mutation formulas for each type of
parameters are shown in Table 1.

Table 1 — Argument mutation formulas

Argument type Mutation formula
Integers, I} = XOR(L[K], UXZ®®),
Floating points k= Ug‘;ize"fm‘l
Booleans B} = Uﬁé
Enums E; = {ey, e,....em},

El = E[l], l=U)"

int

75



Control, Navigation and Communication Systems. 2024. No. 2

ISSN 2073-7394

The I;[k] represents a k-indexed byte from integer
value, where k is taken from uniform int distribution in
the range from O to size of T in bytes minus 1. For
example, for the char type the indexed byte is always
equal to 0. The formula was firstly introduced by M.
Zalewski and is used in the libFuzzer implementation
[11]. For the boolean values the mutated value is taken
as uniform integer distribution in range from 0 to 1. For
the enum values, all valid values are gathered into an
array E;, and then indexed via I, that is taken as uniform
int distribution from 0 to the size of array E;. For integer
values. the mutation of parameters doesn’t change the
number of bytes, which represent the type of the
argument. Also, string values aren’t mutated as it can
break the context and make it irrelevant. For example,
string parameters can represent JSON-encoded data.

Experimental results

The experimental setup includes two C++ open-
source libraries widely used in production codes all over
the world. The subjects are represented in Table 2.

Table 2 — Experimental subjects

Library Hash | Sources (LoC) | Test Suites (LoC)
Hjson f18f03f 3936 1970
Pugixml | b2b4664 8943 8800

The library interfaces were parsed into the AST and
source wrappers were generated and compiled into the
original test suites. The test suites were run, and test scripts
were generated. Example of the script is shown in Fig. 3.

object_1 = hjson.Value(hjson.UChar(248))

object_2 = hjson.Value(hjson.Char(100))

object_4 = hjson.plusOp(object_1, object_2)
hjson.equalEqualOp(object_4, hjson.Int(350))
object_4 = hjson.plusOp(object_2, object_1)
hjson.equalEqualOp(hjson.Int(334), object_4)
object_4 = hjson.plusOp(hjson.UChar(250), object_1)
hjson.equalEqualOp(object_4, hjson.Int(500))

Fig. 3. Generated script part example for Hjson library

Code coverage measurement of the original test
suite TS, and CIDER generated script S, one is shown in
Table 3. The values for generated script coverage and the
original test suite differ. The reasons were investigated
and was found out that it’s due to fact that not all

0,9
08
~07
o
S06 |
=05 |
O\Q il
v0'4 L
S -
®03 ——Line Cov
%0,2 r —— Branch Cov
Oo1 —— Func Cov
0 | | | | |
0 o5 1 15 2 25 3 35 4
Script instructions (x1000)

functions of C++ nature making sense in the context of
lua. For example, move assignment operators and copy
assignment operators are ambiguous from the lua side, as
r-value references aren’t supported by lua.

Table 3 - Comparison of code coverage results

Line Branch Function
Library Cov (%) Cov (%) Cov (%)
TS, S, TS, S, TS, S,
Hjson 86,6 | 828 | 523 | 48,3 | 50,2 | 49,3
Pugixml 722 | 689 | 61,1 | 589 | 68,1 | 66,3

In addition, the execution time of TS, and S, were
compared, results are shown in Table 4. The experiment
was conducted using a MacBook Pro 2019 equipped with
an Intel Core i7 processor (2.6 GHz, 6 cores), 16 GB of
DDR4 RAM (2666 MHz), and a 512 GB SSD. The
generated scripts were executed step-by-step, and the code
coverage was measured. Results are shown in Fig. 4 and 5.

Table 4 — Comparison of average execution times

Librar S, instructions Avg. time (ms)

y count TS, S,
Hjson 4178 635 649
Pugixml 17050 57 406

For both libraries there are continuous regions of
instructions where the code coverage doesn’t grow. Such
regions contain similar script instructions with
parameters that can be also optimized with HS algorithm
to achieve the highest code coverage without generating
new function calls.

Harmony search optimizations were performed on
average with 5k iterations, and most effective parameters
are H,,=10; 8 = 0.5; { = 0.2. The stopping criteria was
not finding any new solutions that can be saved into the
memory over 300 iterations. Optimized and original script
comparison are shown in Table 5, and in Fig. 6 and 7.

Table 5 — Comparison of code coverage results
for optimized and initial scripts

Line Branch Function
Library Cov (%) Cov (%) Cov (%)
Sc S Se S¢ Sc S
Hjson 82,8 | 834 | 483 | 49,3 | 493 | 508
Pugixml 68,9 | 732 | 589 | 628 | 663 | 67,1
1
508 r e
o A
S =
X 06
e\o/ ’ '1
b} 1 _—
204 e Line Cov
E) ————— Branch Cov
<3 L Line Cov Opt
©02 r Branch Cov Opt
0 | | | | | | |
0 05 1 15 2 25 3 35 4
Script instructions (x1000)

Fig. 4. Hjson coverage script instructions dependence

Fig. 6. Hjson optimized script vs original comparison

76


https://github.com/hjson/hjson-cpp/commit/f18f03fa9d6dd1376ab44e9ed28948497aecb905
https://github.com/zeux/pugixml/commit/b2b466403084667c90a0f0cc4e960405cfc8117a

ISSN 2073-7394

CucreMu ynpaBiIiHHsI, HaBiraiii Ta 3B's3ky. 2024. Ne 2

0,8

o o o
(83 (2] ~
T T T

o
~
T

——Line Cov

Coverage (%, x100)

—— Branch Cov

——Func Cov

4567 8 91011121

3141516 17

o

-
N OE
w -

Script instructions (x1000)

0,8
0,7
~ 06 -
P Y S s
1 T T T T s v = e g n i
X 05 |-
- R N A S S —
< 04
S -
g 03 b .. |77 Line Cov
> g | ----- Branch Cov
S 02 ;
o5 Line Cov Opt
0,1 Branch Cov Opt
O L L L L L L L L L L L L L L L L L
012345678 91011121314151617
Script instructions (x1000)

Fig. 5. Pugixml coverage script instructions dependence

Conclusion

A new tool for assisted test scenario generation has
been presented. Experiments on third-party libraries have
shown that the scenarios and original test suites have
comparable code coverage and execution time. In addition,
the generated scripts have been optimized using the
harmony search algorithm. The result scenarios can be

Fig. 7. Pugixml optimized script vs original comparison

used to improve existing regression testing test suites.
Step-by-step coverage measurement has shown the
regions of the original test suite that can be improved
applying mutation of the parameters. For more covered
Hjson the coverage improvement value is less than for the
Pugixml library. The technique can be studied and
improved further with legal method sequences generation,
extending the search space for tests scenarios optimization.

REFERENCES

1. Yunho, K., Kim, M. and Kim, Y. (2022), “CITRUS: Automated Unit Testing Tool for Real-world C++ Programs”, 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST), Valencia, Spain, pp. 400-410, doi:
https://doi.org/10.1109/ICST53961.2022.00046

2. Li, G, Ghosh, I. and Rajan, S. P. (2011), “KLOVER: A Symbolic Execution and Automatic Test Generation Tool for C++
Programs”, Computer Aided Verification 23rd International Conference, Springer, Berlin, Heidelberg, doi:
https://doi.org/10.1007/978-3-642-22110-1 49

3. (2024), The LLVM compiler infrastructure, available at: http://www.llvm.org/

4. Zhang, S., Saff, D., Bu, Y. and Ernst, M.D. (2011), “Combined Static and Dynamic Automated Test Generation”, ISSTA '11: Proc.
of the 2011 Int. Symp. on Software Testing and Analysis, N-Y, pp. 353-363, doi: https://doi.org/10.1145/2001420.2001463

5. (2024), Hjson, a user interface for JSSON, available at: https://hjson.github.io

6. (2024), Light-weight, simple and fast XML parser for C++ with XPath support, available at: https://pugixml.org/

7. (2024), Simplified Wrapper and Interface Generator, available at: https://www.swig.org

8. (2024), The Programming Language Lua, available at: https://www.lua.org

9. Geem, Z., Kim, J. and Loganathan, G. (2001), “A new heuristic optimization algorithm: Harmony search”, Simulation, vol. 76,

no. 2, pp. 6068, doi: https://doi.org/10.1177/0037549701076002

10. Yang, X.-S. (2009), “Harmony Search as a Metaheuristic Algorithm”, Music-Inspired Harmony Search Algorithm: Theory and
Applications, Studies in Computational Intelligence, vol. 191, Springer Berlin, Editor Z. W. Geem, 2009, pp. 1-14, doi:
https://doi.org/10.1007/978-3-642-00185-7_1

11. Zalewski, M. (2024), American fuzzy lop (2.52b), available at: https://Icamtuf.coredump.cx/afl

Received (Hapniiiuua) 27.02.2024
Accepted for publication (TIpuitasta no apyky) 24.04.2024

CIDER : InctpymeHT aBTOMaTH3anii TecryBanus C++ 6idmiorex
M. B. I'yneBnu

AHoTauis. IIporpamHe TeCTyBaHHS € OJHIEIO 3 HANBAXKIIUBIIINX YaCTHH XKUTTEBOTO LUKITY PO3poOKHU npoaykry. Kommanii
CTUKAIOTBCS 3 3HAYHUMH PH3UKAMHM, MOB'3aHMMH 3 BIJIMOBaMM MpOrpaM, BKJIOYaroun (iHAHCOBI Ta pemyTauiiiHi, TOMy
LIKaBIITECS BKJIAAEHHSIM 9acy Ta TpoIIel y HOBI METOAM TECTyBaHHs Ta 3abe3medeHHs skocTi. [Iporpamu, Hammcani Ha C++,
BIZIOMi CBO€I0 BHCOKOIO MPOJYKTHBHICTIO, ajie CKIaJAHI y 3B'I3Ky 31 crenudikoro MoBH. Y TOH e uYac aBTOMAaTH30BaHi
iHCTPYMEHTH, sKi JOCTYNHI HEepeBaXKHO I mporpam 3 rpadiuHuM iHTepdelicoM KopHucTyBaua He € e(eKTHMBHHMH Ui
TeCTyBaHHAM perpecii BOyZOoBaHMX MoxyJiB. TakuM YMHOM, HaBiTh YacTKOBA aBTOMATH3allil TaKMX MPOILECIB MOXE MaTH
NO3UTHBHUI BIUIMB Y BiJJHOLICHHI ONTUMI3allil 4acy TecTyBaHHs perpecii. Y craTTi po3risiHyTa TeXHiKa TECTYBaHHS 3alHCy Ta
BIATBOPEHHSI BUKOHAHHS IPOTPaMH Ha PiBHI KOMIIOHEHTIB. 3alpONOHOBAHUH IHCTPYMEHT I'eHepye CIieHapil TeCTyBaHHS IIij 4ac
BHUKOHAHHS IIPOTpAaMH, HAJAlOYM 3MOTY BHKOHYBATH py4YHE TECTYBaHHS Ta OJHOYAcHO pO3LIMPIOBATH 0a3y JdaHHMX
ABTOMATH30BaHOT'O BUKOHAHHS KOMIIOHCHTHHX TeCTiB. EKCIIEpUMEHTH MOKa3aJu, 10 Pe3yJIbTATH IIOKPUTTS KOy TaKHX CLEHapiiB
€ Ha BUCOKOMY PiBHI i MafOTh TeHAEHIIIO 10 IIOKPAIIEHHS Yepe3 arOPUTMIUHY OITHUMI3aIlifo.

Kawo4yoBi ciaoBa: aBromaru3amis TeCTyBaHHsS, T€HEpallis CKpPHUIITIB, perpecuBHE TecTyBaHHs, C++, omrmMizamis,
TapMOHIYHHH ITOITYK, HOKPUTTS KOL.

77


https://doi.org/10.1109/ICST53961.2022.00046
https://doi.org/10.1007/978-3-642-22110-1_49
http://www.llvm.org/
https://doi.org/10.1145/2001420.2001463
https://hjson.github.io/
https://pugixml.org/
https://www.swig.org/
https://www.lua.org/
https://doi.org/10.1177/0037549701076002
https://doi.org/10.1007/978-3-642-00185-7_1
https://lcamtuf.coredump.cx/afl

