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ADAPTIVE DOUBLE NEO-FUZZY NEURON AND ITS COMBINED LEARNING

Abstract. The subject of the study in the article is the process of data classification under conditions of fuzziness and
a limited volume of training sample. The goal is to enhance the double neo-fuzzy neuron within the framework of solving
the data classification task with constraints on the training sample volume, processing time, as well as fuzziness and non-
stationarity of input data. The tasks include improving the double neo-fuzzy neuron to enhance the system's approxima-
tion properties and developing a combined system learning method to ensure fast performance in an online mode. The
approaches used are lazy learning, supervised learning, and self-learning. The following results have been obtained: the
double neo-fuzzy neuron has been modified by introducing a compressive activation function at the output, creating con-
ditions for building a neo-fuzzy network capable of adapting to non-stationary input data in an online mode and avoiding
the vanishing gradient problem. Conclusion. A combined learning method for the double neo-fuzzy neuron has been
proposed, involving parallel utilization of lazy learning, supervised learning, and self-learning with the "Winner Takes
All" rule, followed by automatic formation of membership functions, enabling fast online classification in the presence
of outliers in the input data.

Keywords: fast data classification, online classification, fuzzy classification, short sample, neo-fuzzy neuron, combined

learning.

Introduction

Today, artificial neural networks (ANN) have been
widely used to solve a wide range of problems related to
Data Mining, primarily due to their universal
approximating capabilities and their capacity to adjust
their parameters (learn) by optimizing the adopted
objective function (learning criterion). The main
“building block” of ANN typically comprises elementary
perceptrons by F. Rosenblatt, each using a particular
nonlinear activation function (most referred to as the
“squashing” activation function). Often, no more than
three layers are required to achieve the necessary level of
approximation accuracy from a different perspective.
However, the training of ANN with a squashing
activation function encounters significant computational
challenges, often referred to as the “vanishing gradient”
problem, which leads to a halt in the training process,
causing network “paralysis”. Consequently, modern deep
neural networks (DNN) [1-3] have abandoned squashing
functions (such as sigmoid and tanh) in favour of
piecewise linear functions (ReLU, PReLU, etc.) whose
derivatives are commonly used as activation functions,
most of which do not yield zero values.

Since such activation functions do not fulfil the
conditions of G. Cybenko's approximation theorem [4],
ensuring the required accuracy necessitates DNNs to
encompass a substantial number of layers, neurons, and
synoptic weights. Consequently, this demands an
expansion in the volume of training samples and setup
time. Although the application of adaptive piecewise linear
activation functions can expedite the learning process [5],
the need for substantial amounts of training data persists.

This situation can potentially be enhanced through
the utilization of advanced nodes in lieu of traditional
neurons, with one such alternative being the neo-fuzzy
neuron (NFN) [6, 7]. The advantages of neo-fuzzy
neurons have been showcased in addressing various

problems [8, 9]. What sets a neo-fuzzy neuron apart is its
integration of nonlinear synapses in place of traditional
synaptic weights, with each synapse embodying the F-
transform [10]. This approach facilitates universal
approximating properties using a system of kernel
membership functions, including conventional triangular
functions that satisfy the conditions of unity partitioning.
It's noteworthy that the neo-fuzzy neuron also offers
piecewise linear approximation, the quality of which is
significantly contingent on the count of membership
functions within each nonlinear synapse.

A further progression in the evolution of the neo-
fuzzy neuron is the Double Neo-Fuzzy Neuron (DNFN)
[11, 12], which distinctively incorporates a non-linear
synapse at its output (as opposed to an activation
function), supplementing the non-linear synapses at the
inputs. Importantly, the F-transform at the neuron's
output can accommodate various forms of traditional
activation functions, including squashing functions,
without disrupting the vanishing gradient.

Both in NFN and DNFN, the number of
membership functions in nonlinear synapses is
predetermined  (usually based on  empirical

considerations), evenly distributed along the abscissa
axis. Enhanced approximation quality can be achieved by
dynamically determining the requisite number of these
functions and adapting the positioning of their centres.
This necessitates an augmented training procedure that
incorporates adjustments to the number and centres of
membership functions. This innovation is anticipated to
augment the precision of DNFN in comparison to
systems with predetermined counts and shapes of
activation functions - membership.

The primary objective of this article is to
investigate and propose an alternative approach that
overcomes the limitations encountered in traditional
artificial neural networks (ANNSs) and their training
methodologies. In particular, we aim to address the

70

© Bodyanskiy Ye., Chala O., 2023



ISSN 2073-7394

Cucremu yrpaBiliHHS, HaBiraiii Ta 3B's3ky. 2023. Ne 3

challenges associated with the "vanishing gradient
problem, which impedes the training process of ANNs
with certain activation functions. Additionally, we seek
to enhance the accuracy and efficiency of the adaptive
learning process within neural networks.

Architecture of the Double neo-fuzzy neuron

The DNFN architecture is shown in Fig. 1 and
consists of n+1 nonlinear synapses NS;, i =0,1,...,n the

scheme of which is shown in Fig. 2.
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Fig. 1. Double neo-fuzzy neuron

w, (k)

x(k) Hpi

My

Fig. 2. Nonlinear synapse

The input information for training is a sample of
vector observations X ={x(1), x(2),...,X(k),..., X(N)},
()= 0qk), o %00 s (DT e R,
where k or the observation number in the sample, if it is
specified a priori in the batch form, or the number of the
moment of the current time, if the training is carried out
online as the action information is received for
processing. Each nonlinear synapse contains ¢
membership functions iy (U;), p=1...,q; i=12,..,n;

and o, (Up) in the output layer and q tuned synaptic
weights (one for each membership function) Wi, and Wy, .

In this way, nonlinear synapses implement the
transformation adaptive double neo-fuzzy neuron
(DNFN) its combined learning.

q
Ui (% (K)) = D i (% (K))wp (K),
p=1

. (1)
§(k) = 3 10 (g (K))wpi (K)-
p=1

It is also easy to write down the transformations
implemented by DNFN as a whole:

11 q
Ugi (K) = D D i (% (K))wsi (K),

i=1 p=1

q 71 q
§k) = D" 4po Y, D #pi (% (K)) Wi ()W (K) ).

p=1 i=1 p=1

O]

Triangular ones satisfying the Ruspini conditions
are most often used as the membership function in NFN,
due primarily to numerical simplicity, although the use
of other functions, such as B-Splines, is not excluded.

If the input data is pre-encoded on the interval [0,
1], and their centers c; and cpo evenly spaced on the

abscissa axis A=Cp,1j—Cpj, it is easy to see that

A=cCpi—Cpi=(d ~1)™1, namely, these functions can
be written in the form

-1 .
Coi —X: )Coi — If Xi €[0,Cp;i ],
() =1 2 e I L0l g
0 otherwise,
(X =Cp_1i)(Cypi _Cp—l,i)_l
it x; E[Cp—l,iv Cpi]:
15 (6)1 €psai = %) (Cpani —Cpi) 4
if X [Cpi Cpyril
0 otherwise,
1
(X —Cq1,i )= Cq1i)
Hqi (%) if X e[cgg. 1,1, ®)
0 otherwise.

for the input layer of nonlinear synapses. For a nonlinear
synapse DNFN can be written

(Cop —Ug)Coo ~ if Ug [0, Cxl,
1o ()| %20 ~H0)C20 0 20 ©)
0 otherwise,
(Up —Cp10)(Cpo _Cp—l,O)_l
if ug €[Cp10, Cpol
1p0 (1)1 (Cp11,0 —Uo)(Cps1.0 —Cpo) ™

if Ug € [CpO'Cp+l,0]'
0 otherwise
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(Up —Cpg0)A- Cp—l,O)_l
if ug e [Cp_lyo,l], (8)
0 otherwise

Hpo(U)

a feature of the membership function used in DNFN is
that at each time instant k only two neighbouring
functions are-fired. Suppose that the component of the
input  vector x(k) belongs to the interval
Cpi <Xg(k) <Cp,q;i, thatis, only two adjacent functions
are fired 415 (% (K)) and 4p,; ( (K)).

It is easy to calculate that the signal at the input of
the i-th input NS; can be represented in the form:

q
u; (% (K)) = 2 i (% (K))wii () =
p=1

= Hpi (X (k))Wpi (k) + Hpii (% (k))Wp+1,i (k) =
= (psai — X (K)(Cpyai —Cpi) " Wpi (K) + 9)

+(% (K) = Cpi)(Cpsi —Cpi) W1 (K) =
= g (K)x; (k) +b; (k)

where
8 (K) = (Wp1, (K) = Wi (K))(Cpi —Cpi) ™
p+LiWpi (k) _ (10)
bi (k) [ p+1|(k) ]( p+li — p|)
and the signal at the adder input:
Up (k) = > a5 (k)x; (k) +1y (k). (11)

i=1
Then the DNFN output signal in general can be
written as

q
Y(K) = D 150 (g (K))Wpo (k) =
p=1
= tpo (Ug (K))Wpo (K) + £2p41,0 (U (K))Wp 1 0 (K) =

= (Cps1,0 ~Uo (K)(Cpi1,0 —Cpo) " Wpo (K) + (12)
+(ug (K) = Cpo)(Cps10 —Cpo) " Wps10(k) =
= 2 (k)ug (k) + by (K)
where
89 (K) = (Wp41.0(K) = W0 (K))(Cps1.0 —Cpo)
_ Cp+1,0Wpo (k)— 1 (13)
b (k) = (—cpowpﬂ,o © J(cpm —cpi)

It is easy to see that NSgat the DNFN output does

not play the role of an activation function in
F. Rosenblatt's neuron, and in some sense is close to the
PReLU function popular in DNN, however, in our case,
this activation function is configured, implements the F-
transformation and can accept you are a complicated
shape.

Finally, the transformation implemented by DNFN
can be implemented in the form

§(k) = ag ()X a5 (K)x; (k) +b; (k) + by (k) ,

i=1

(14)

that is, a piecewise linear approximation of some
ringing function is provided, the quality of which
depends on the number of readings (belonging
functions) g, the location of the centres of these
functions and (n+1)q synaptic weights, which is
adjusted during the learning process.

A training procedure
of the Double neo-fuzzy neuron

The tuning of DNFN synoptic weights is
implemented by gradient minimization (tutored learning)
of the objective function, which is commonly used in
training and ANNS.

E(k) = (y(K) - 9(K))* = (y(K) -
_Z Hpo [Z Z Hopi (% (k))Wp| J pO)2 = (1%5)

=1p=1

=(y(k)—ao[2aixi(k)+bi)—bo]
i=1
where y(k) -external reference signal.

The learning process at each moment k is
implemented in two stages: adjustment of the synoptic
weights of the original nonlinear synapse NSj setting the
weights of input signals NS;, i=12,...,n

At the same time, it is noticeable that only the
weights corresponding to the membership functions are
adjusted pp; and pp.q, which are currently k have zero

values.
At the same time, the learning process can be left as
itis
Wi (K +1) = wig (k) =7 (K)I(K) 10 (u(k)),
l=p,p+1
Wig(k+1) =wg(k) VI=p=p+1

(16)

where (k) = y(k)—9(k) — learning error, 7y(k) >0 —
learning rate parameter, which means speed of
convergence.

This process can be optimized for speed by using a
modification of the Kaczmarz-Widrow-Hoff algorithm
[13, 14]:

Wpo (k +1) = wpo (K) +
1(K) t1po (u(K))
12 50 U(K) + % 510 (U(K)
Wpa,0(K+1) =wpq (k) +
1K) 22p.41,0 (u(K))
1200 (U(K)) + 42 1,0 U(K))

(17
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In the case when the input data is disturbed by
interference, an algorithm with additional filtering
properties can be used [15]

wpo(k +1) = Wpo(k)+
+10 ()1 (K) 20 (U (K)),

Wo1,0(K+1) =wpq0(k)+
+ 170 (K1 (K) 1.0 (W(K)),

10 (K) = (7010 (k =1) + 2% po (u(K)) +
+ 12 g (Uk))

where 0 <17, <1 is a forgetting factor.

To adjust the synaptic weights of the first layer of
non-linear synapses NS;, a standard S-rule training
method can be used.

Let us consider the derivatives of the objective
function.

(18)

FEK) _ 1y IK) 2o (k) _
oW ug(k)  ow;
aug (k) (19)
- —I(k)ao(k)o—l_
and ¢ isan error.
d(k) =1(k)ag (k). (20)

It is easy to write down the gradient learning
procedure

Wi (K +1) = w; (k) +77; (k) (K) 24 (% (K)),
I=p,p+l,
Wi (K+1D) =w (K) VIl = p= p+1.

(1)

Optimized versions of this procedure take shape
accordingly

Wpi (k+1) = wp; (k) +
. (k) 22pi (i (k))
2 gy 2 v !
1 i (% (K)) + 7 p g, (6 (K))
Wpi1,i (k+1) = Woi1i (k) +
.\ S(K)p41i (% (K))
2 (. 2 . '
H pi (% (k) + u p+1i (% (k)

(22)

and
Wpi (K +1) = wp; (k) +

17 (K)S(K) i (x; (K),
Wpgi(k+1) =wp,qi(k)+

171 (K)S(K) 2242, (% (K)),
7 (K) = (g 7 (K =1)+ 225 (% (k) +

+ 5 (6 ()
O < 7]i < l

(23)

It is possible to improve the approximate properties
of DNFN by adjusting not only the synoptic weights of
linear synapses, but also the number of membership
functions and the location of their centres. Self-learning
methods without a teacher and lazy learning based on the
principle of “Neurons at data points” [16] can be used for
this.

Usually, the number of membership functions in
non-linear synapses ¢ is given by p empirical
considerations and the weights are placed uniformly with
an interval A. Let us consider the threshold of
indistinguishability of two neighbouring centres ¢ << A
let's start the learning process with the entry into the
system of the first observation of the training sample

X(@) =% @), .., %@, ... x,(k))T. The first function
of belonging x 4 ;(x; (1)) is formed so that its centre
¢i(x@). Then with the arrival of the second
observation  x(2) the condition is checked
[ % (2)—c;i(2)|I<o and if it is performed for some

components of the input signals, then new centres are not
formed at these inputs.

If the condition is fulfilled (on several inputs)
6 <|%(2) ¢y [< 26 , coefficients of centers ¢, ; adjusted

according to the self-learning rule “Winner Takes All”
[17], introduced by T. Kohonen
€1i (2) = €3 (1) + 770 (2) (% (2) - iy (1))

With the learning threshold parameter 74(2) <1 if

the inequality holds for some components
20 <x;(2)—i(2), then the second membership

function is formed at the i-th input ug with centre

(24)

Coi = X;(2). During the second learning cycle, the
number of membership functions in synapses NS; may

be different. On the N-th self-learning step with input
signal x(N) membership functions are solved for each

nonlinear synapsee the membership function- winner is
sought y?,i (x(N-1) for which the distance
[ i (N)—cpi (N =1)| is minimal and the following rules
are checked:

1% (N)=Cpi(N-D) <5,

8<% (N)—cpi (N -1)[< 26, (25)

25 <% (N) = Cpi (N ~1)|

after which at the i-th input in the linear synapse NS; or
is not formed or adjusted or a new (and last) membership
function is created 1q; (X;) with the centre Cg; . Thus, in

each nonlinear synapse, the number of membership func-
tions can vary from two (in the case of binary input sig-
nals) to N (in the case of a small indistinguishability
threshold . Similarly, the membership functions of the
nonlinear synapse can be configured NS at the output

where DNFN.
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Conclusion

To enhance the widely known neo-fuzzy neuron
(NFN) referred to as the Double neo-fuzzy neuron, which
exhibits enhanced approximative capabilities when
compared to its prototype, a novel combined learning
approach is introduced. This approach is grounded in
tutored learning, self-learning, and lazy learning
principles. Through this methodology, the aim
is to achieve optimal rapidity in configuring the synoptic

weights of nonlinear synapses, along with the automatic
formation of membership functions, all implemented in
real-time online mode.

Importantly, the proposed method doesn't
necessitate substantial amounts of training data. Instead,
it's characterized by its computational simplicity,
rendering it applicable in diverse scenarios. This method
holds promise in creating a double neo-fuzzy system
capable of effectively adapting to phasing systems, even
within the constraints of a limited training dataset.
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AnantuBHuii noABiiinmii Heo-¢a33i HelipoH Ta iioro KOMOiHOBaHe HABYAHHS
€. B. bonsgucekuit, O. C. Yana

AnoTanis. [lpeaMeTromM BUBUCHHS B CTAaTTi € npolec kiracudikamii JaHUX 32 YMOB HEUIiTKOCTi Ta 0OMEXEHOTO 00’ eMy
HaB4YaJbHOI BUOipku. MeTol0 € yT0OCKOHAJICHHS MOBIHHOr0 Heo-(a33i HeiipoHa B paMKax BUpIIIEHHS 3a1a4i Kinacugikamii
JaHMUX 13 0OMEXEHHSIMH 1070 00’eMy TpeHyBalbHOI BUOIpKH, Yacy OOpOOKH, a TaKOXK HEUiTKOCTi Ta He CTal[iOHapHOCTI
BXiJIHUX JaHUX. 3aBJaHHS: YJOCKOHAJICHHs MOJBIHHOrO Heo-(a33i HelpoHa [UIs MOKpAIleHHs ampOKCUMAaLiiHUX BIAaCTH-
BOCTEil CHCTEMH, a TaKOK POo3poOKa KOMOIHOBAaHOTO METOY HaBYaHHS CHCTEMH AJsl 3a0e3MeueHHs MIBUIKOI B OHJIaiH pe-
XKHUMi. BUKOpHCTOBYBaHMMU MiIX0JaMHM €: JTiHUBE HaBYaHHS, HABYAHHS 3 YUUTEJEeM Ta caMOoHaB4YaHHs. OTpUMaHi HaCTyHi
pe3yabTaT. MonudikoBaHO MOABIHII Heo-(a33i HEWpPOH, 3aMPOTIOHOBAHO METO KOMOIHOBAaHOT'0 HABYaHHS, 1[0 3a0e3-
reyye ONTHMaNIbHY IIBHIKICTh IPH HAaJalITYyBaHHI CHHONITHYHMX Bar Ta aBToMaTH4YHe (OopMyBaHHs QyHKIIH HaJeKHOCTI B
OHJIAMH-PEKUMI 32 YMOB 0OMexeHol HaB4anbHOI BHOipKkH. BHCHOBKH. Y 10CKOHaIEHO MO/ABIHHUI Heo-(ha33i HeilpoH muis-
XOM BBEJCHHSM CTHCKAIO40l akTUBAIiiiHOT QyHKIIT Ha BUXO/I, 110 CTBOPIOE YMOBH IS 110 Oy 10BH Heo-(}a33i Mepexi 3 Mo-
JKJIMBICTIO alanTamii Jo HecTalliOHApHHUX BXiJHUX JaHUX 32 YMOBH POOOTH B OHJIAMH PEXHMI, a TAKOXK YHUKHYTH NpoOIeMu
3HMKAIOYOro TpajiieHTy. 3anpornoHOBaHO KOMOIHOBAaHUI METO1 HaBYaHHS TOABIITHOTO Heo -(a33i HelpoHy, sKuil nepeabavae
napasnenbHe BUKOPHCTAHHS JIIHUBOTO HABYaHHS, HAaBUYaHHS 3 YUUTEJIEM Ta CAMOHaBYaHHs 3a npaBuiioM «Ilepemorxernp 3a0u-
pae Bce» 3 MONANBIINM aBTOMaTHIHUM (HOpMYBaHHAM (QYHKIIH HaEKHOCTI, IO Ja€ MOXKIIUBICTh MBHUIKOI Kiacudikamii B
peXuMi OHIIAHH 32 YMOBH HAasIBHOCTI BUKHUIIB y BXiTHUX JAHUX.

KawuoBi cioBa: mBuaka kinacudikamis qaHux, kiacudikaiiis B oHIAHH pexuMi, HeUiTKa kiacudikaiis, KOpoTka
BHOipKa, Heo-(a33i HelpoH, KOMOIHOBaHE HaBYAHHS.
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