Control, Navigation and Communication Systems. 2023. No. 2

ISSN 2073-7394

UDC 004.8

G. Golovko, D. lievliev

doi: 10.26906/SUNZ.2023.2.098

National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine

ENHANCED AUTHORIZATION FOR SECURE MANAGEMENT
OF SENSITIVE DATA IN HYBRID APPLICATIONS

Abstract: Sensitive data is often managed by cloud-based applications, which can be vulnerable to attackers who seek
unauthorized access to this data. Traditional approaches to authorization may not be sufficient to protect sensitive data from
such attacks. In this article, we propose an enhanced authorization approach that uses a combination of symmetric and
asymmetric cryptography to secure sensitive data. Specifically, we propose generating a unique encryption key per file and
a set of public and private keys per user, which are used to encrypt and decrypt the data. We demonstrate the feasibility of
our approach with examples in Node.js, showing how to generate public and private keys, encrypt and decrypt files, and store
encrypted data on a drive. Our approach provides an effective solution to the problem of managing sensitive data in hybrid
applications, while preserving user and developer convenience.

Keywords: Cryptography, Public-key cryptography, Authorization, Node.js.

Introduction

Cloud-based applications are commonly used to
manage sensitive data, such as customer information and
messages. However, such data can be vulnerable to attacks
by unauthorized users seeking to gain access to this data.
Traditional approaches to authorization, such as role-based
authorization and granular permissions systems, may not
be sufficient to protect sensitive data from such attacks.
This is because even if an application is designed with the
strongest authentication and authorization mechanisms, it
can still be vulnerable to security issues in the libraries
used to build it. For example, in Node.js, one of the most
commonly exploited vulnerabilities is Prototype Pollution
[1], which can allow attackers to gain administrative
privileges and access sensitive data. We need to embrace
the fact that attackers could potentially get access to
storage with sensitive data.

Proposal

We propose an enhanced authorization approach
that uses a combination of symmetric and asymmetric
cryptography [2] to secure sensitive data. Specifically,
we propose:

1. Do not store unencrypted data. We accept that
the attackers could access the data, but they will not be
able to read it without the encryption key.

2. Use a unique encryption key per file. We accept
that attackers might get much faster hardware in the
future and find an encryption key. Using a unique
encryption key per file dramatically increases attackers'
effort to decrypt data and make it much harder to use the
Harvest now, decrypt later [3] attack.

3. Use a unique set of public and private
encryption keys per user. Even if one user's key is
compromised, the attacker will not be able to decrypt
files from other users.

4. Always encrypt a file encryption key with a user
public encryption key. This ensures that only authorized
users can decrypt it and read file data.

Implementation

We demonstrate the feasibility of our approach with
examples in Node.js, a popular platform for building
cloud-based applications. Node.js has a built-in standard

crypto [4] package which provides routines for
symmetric and asymmetric cryptography. Each user
should have their own public and private keys. In order
to generate a key pair we should use the
generateKeyPair() [5] (Listing 1).

const { generateKeyPair } = require('node:crypto’);
generateKeyPair('rsa’, {

modulusLength: 4096,

publicKeyEncoding: {

type: 'spki’,

format: 'pem’,

}
privateKeyEncoding: {
type: 'pkcs8’,

format: ‘pem’,

cipher: ‘aes-256-chc’,
passphrase: 'top secret',

H
}. (err, publicKey, privateKey) => {

bk

Listing 1. RSA key pair generation

The following 4 scenarios provide implementation
guidelines that could help to understand the main idea.

Scenario 1: create a file with a sensitive information

1. Prior to storing of any secret, the owner needs to
generate a unique symmetric key.

2. Owner stores encrypted file on a drive.

3. Owner stores encrypted symmetric key on a
drive (Fig. 1).

The randomBytes() [6] routine allows to generate
cryptographically strong pseudorandom data which is
then used as a symmetric encryption key (Listing 2).

The createCipheriv() [7] is being used to create an
encryption object which is then used to encrypt a file
stream (Listing 3).

const { randomBytes } = require('node:crypto’);

const symmetricEncryptionKey = randomBytes(32);

Listing 2. Symmetric key generation

98

© Golovko G, lievliev D., 2023

https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later

ISSN 2073-7394

Cucrtemu yrpaBiliHHs, HaBirarii Ta 38's13Ky. 2023. Ne 2

Generate unique eer

— file st/mme_tﬁc ke,t/

+ | Urercrypted
F‘-le

Owner Pubhc
ke_y

¢

Fig. 1. Encrypted file creation flow

{ createCipheriv } = require('node:crypto");
{ createWriteStream } = require(‘node:fs’);
busboy = require('busboy");

INITIALIZATION_VECTOR="23ca408b8ff898bb"

bb = bushboy({ headers: reg.headers });
bb.on("file", (, file, { filename }) => {
symmetricEncryptionKey = randomBytes(32);
cipher = createCipheriv(
'aes-256-cbc’,
symmetricEncryptionKey,
INITIALIZATION_VECTOR
)i
stream = createWriteStream(filePath);
file.pipe(cipher).pipe(stream);

Listing 3. Create encrypted files stream

The publicEncrypt() [8] is being used to encrypt
file’s symmetric encryption key (Listing 4).

{ publicEncrypt } = require('node:crypto’);
{ writeFile } = require('node:fs’);

encryptedKey = publicEncrypt(publicKey,

fileSymEncryptionKey)
writeFile(pathToEncryptedKey,
encryptedKey.toString(‘hex’))

Listing 4. symmetric key encryption

Scenario 2: decrypt file content

1. User needs a private key to decrypt symmetric
encryption key.

2. With help of symmetric encryption key user
could decrypt encrypted file content (Fig. 2).

The privateDecrypt() [9] is being used to get file’s
symmetric encryption key (Listing 5). The createDecip-
heriv() [10] is being used to create a decryption object which
then sends decrypted data to an output stream (Listing 6).

Private ke_y

&

Unencrypted
Rle

Fig. 2. File decryption flow

{ privateDecrypt } = require(‘'node:crypto’);
encryptedKey = Buffer.from(rawFileData, 'hex’)
fileSymEncryptionKey = privateDecrypt({
privateKey,
Passphrase,
}
encryptedKey);

Listing 5. Symmetric key decryption

{ createDecipheriv } = require('node:crypto");

{ pipeline, createReadStream } =
require('node:fs');
INITIALIZATION_VECTOR="23ca408b8ff898bb"

encryptedFileStream =

createReadStream(filePath);
decipher = createDecipheriv(
‘aes-256-chc’,
symmetricEncryptionKey,
INITIALIZATION_VECTOR);
pipeline(encryptedFileStream, decipher,
outoputStream, (error) => {

Listing 6. Decrypt file stream

Scenario 3: share a file
with a sensitive information

1. File owner decrypts symmetric encryption key.

2. File owner encrypts symmetric encryption key
with user’s public key.

3. File owner adds to the storage a new file with
encrypted symmetric key.

4. Only user could decrypt symmetric key with its
private key and then decrypt file content (Fig. 3).

Important to mention that the encrypted file remains
intact. The file storage just got a tiny extra file with
encrypted symmetric key

Scenario 4: revoke access to a file
with a sensitive information

1. Owner removes encrypted symmetric key of the
user.

2. User without a key cannot decrypt file content.

3. Encrypted file remains intact (Fig. 4).

99

Control, Navigation and Communication Systems. 2023. No. 2 ISSN 2073-7394

Encrypted Owner Urique per Rile
SYMMQ‘CM private kel/ SVMMe‘tﬁc

ke,(,'[,_§) + —> key)
a2 7

Unique. per file User Pubhﬂ Encrypted

symmetric key symmetiric _ Oumer deletes

ke‘/ Likes + Tl ke'fﬁf) O encﬁ/pteo(Sl./mmetﬁc
ﬁ } j! A key of the user

Fig. 3. Encrypted file sharing flow
Conclusion

We have proposed an enhanced authorization
approach. Idea behind it is not a new one, it has already
been used for decades in EFS [11] in Microsoft
Windows. It has proven to be reliable over the years.

Since the file encryption is based on the symmetric Fig. 4. Revoking file access flow
cryptography, it allows us to encrypt/decrypt files at a
high speed. Moreover, modern CPUs for more than a As a developer of an application, you need to take

decade have had a hardware acceleration [12] for the care of the recovery key option and the organization
AES [13] algorithm. The biggest drawback of the should define security policy for creation and storing of
approach is the recovery process. the recovery keys.

REFERENCES

1. Prototype Pollution. Snyk. https://learn.snyk.io/lessons/prototype-pollution/javascript/

I'. B. TonoBko. Koncnexm nexyiti 3 oucyunninu "3axucm ingpopmayii 6 komn'tomepnux cucmemax i Kibep6esnexa" (2021).
Hamionansauii yaiBepcutet «[lonraBcpka momitexnika imeni FOpis Korgpatrokay.
https://dist.nupp.edu.ua/mod/resource/view.php?id=122282

Harvest now, decrypt later. Wikipedia. https://en.wikipedia.org/wiki/Harvest_now,_ decrypt later

Crypto package. Node.js. https://nodejs.org/api/crypto.html#crypto

crypto.generateKeyPair() Node.js. https://nodejs.org/api/crypto.html#cryptogeneratekeypairtype-options-callback
crypto.randomBytes(). Node.js. https://nodejs.org/api/crypto.html#cryptorandombytessize-callback
crypto.createCipheriv(). Node.js. Crypto package. Node.js. https://nodejs.org/api/crypto.html#cryptocreatecipherivalgorithm-
key-iv-options

8. crypto.publicEncrypt(). Node.js. https://nodejs.org/api/crypto.html#cryptopublicencryptkey-buffer

9. crypto.privateDecrypt(). Node.js. https://nodejs.org/api/crypto.html#cryptoprivatedecryptprivatekey-buffer

10. crypto.createDecipheriv(). Node.js. https://nodejs.org/api/crypto.html#cryptocreatedecipherivalgorithm-key-iv-options
11. Encrypting File System. Wikipedia. https://en.wikipedia.org/wiki/Encrypting_File System

12. AES instruction set. Wikipedia. https://en.wikipedia.org/wiki/AES_instruction_set

13. Advanced Encryption Standard. Wikipedia. https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

L

Nogkow

Haniiinona (received) 22.02.2023
Mpwuitasito oo npyky (accepted for publication) 16.05.2023

Po3mmpena apTopu3auisi 1isi 6e3ne4HOr0 KepyBaHHs KOH}iTeHUiHHIMI TaHUMH
B riOpuaHNX mporpamax

I'. T'onogko, J1. IeBnen

AHoTania. KoH}imeHmIHHNMH JaHUMH 4YacTO KEPYIOTh XMapHi JOJATKH, SKI MOXYTb OyTH Bpa3IMBUMH IS
3JI0BMHCHUKIB, sIKI IIParHyTh HECAHKI[IOHOBAHOTO NOCTYMy A0 IMX AaHWX. TpaguliiifHUX MiIXOAiB 0 aBTOpu3alii MOxe OyTH
HEJIOCTaTHBO IS 3aXKUCTY KOH(ISHIIIHHUX TaHNX Bifl TAaKKX aTak. Y Liif cTaTTi MU MPOMOHYEMO PO3IIHPEHUH MTiIX1/] aBTOpH3aLlii,
SIKUIl BUKOPHCTOBYE KOMOIHAIIII0 CUMETPUYHOI Ta acHMeTpryHOi Kpunrtorpadii st 3aXucTy KoH}iAeHIiHHNX TaHuX. 30KpeMa,
MH IIPOMIOHYEMO CTBOPHUTH YHIKaNIbHHMI KITIOY MIU(PYBaHHS Ul KOXKHOTO (aiiity Ta Habip BIIKPUTHX i 3aKPUTHX KIIOYIB JUIS
KOKHOTO KOPHUCTYBaua, sIKi BAKOPHCTOBYIOTHCS I MH(PyBaHHS Ta AemH(pyBaHHS faHUX. MU NeMOHCTPY€EMO 3IiHCHEHHICTh
HaIIoro migxoAy Ha mnpuxiagax y Node.js, Moka3syloud, sSK TeHepyBaTH BIIKPUTHH 1 3akpuTuil Kmodi, mmppyBaTH Ta
posmmdpoByBaTH (aiian Ta 30epiraTu 3amudposani qaHi Ha aucKy. Hamr minxin 3abe3nedye edeKTUBHE BHPIMICHHS POOIeMH
YIpaBIiHHS KOHQIASHIIfHUMH MaHMMH B TIOPHIHUX Nporpamax, 30epiraloun IpH I[bOMY 3pYYHICTH Ui KOPUCTYBAadiB i
PO3POOHHKIB.

KawuoBi caoBa: kpunrorpadis, kpunrorpadis 3 BIIKpUTHM KII0deM, aBTopu3aris, Node.js.

100

https://learn.snyk.io/lessons/prototype-pollution/javascript/
https://dist.nupp.edu.ua/mod/resource/view.php?id=122282
https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later
https://nodejs.org/api/crypto.html#crypto
https://nodejs.org/api/crypto.html#cryptogeneratekeypairtype-options-callback
https://nodejs.org/api/crypto.html#cryptorandombytessize-callback
https://nodejs.org/api/crypto.html#cryptocreatecipherivalgorithm-key-iv-options
https://nodejs.org/api/crypto.html#cryptocreatecipherivalgorithm-key-iv-options
https://nodejs.org/api/crypto.html#cryptopublicencryptkey-buffer
https://nodejs.org/api/crypto.html#cryptoprivatedecryptprivatekey-buffer
https://nodejs.org/api/crypto.html#cryptocreatedecipherivalgorithm-key-iv-options
https://en.wikipedia.org/wiki/Encrypting_File_System
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

