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MANAGEMENT IN HIGH-DIMENSIONAL MARKOV SYSTEMS 
 

Abstract .  A problem of analyzing Markov systems along with a large number of states has been considered. The 

conventional computational procedure for obtaining analytical ratios for calculating the distribution of system states is based 

on the use of a system of Kolmogorov differential equations. The system of linear algebraic equations being formed later can 

be easily solved numerically. However, the complexity of obtaining an analytical solution increases rapidly with the increase 

in the problem dimension. In this regard, the purpose is to develop an effective method for studying Markov systems, the 

computational procedure of which ensures the possibility of obtaining solutions for high-dimensional models. The method is 

based on the decomposition of states graph and system transitions. The obtained analytical expressions allow to set and solve 

the problem of rational resource distribution for changing the values of the system parameters to increase its efficiency. The 

method ensures the possibility of solving management problems in Markov systems along with a large number of possible 

states. An example of method application has been considered. 
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Introduction 

The procedures of functioning of a significant part 

of modern complex technical, environmental, military 

and other systems can be described by a mathematical 

model of the same type in many important respects. 

Firstly, such systems can be in one of the many possible 

states at any specific time. Secondly, the system shifts 

from one possible state to another under the impact of one 

or more random events (requests, service requirements, 

etc). Thirdly, the service duration of each requirement is 

a continuous random variable, the distribution density of 

which is assumed to be well known (or it can be 

determined by the results of statistical tests). Fourthly, 

the system is manageable in the sense that it has a limited 

consumable resource that can be used to change certain 

given system parameters to increase its efficiency. The 

similarity of various systems under these distinctive 

features predetermines the possibility of using the same 

type of mathematical models to analyze them. 

On the other hand, the observed differences in the 

functioning procedures for specific systems are primarily 

due to differences in their individual specifications. The 

most important role here is played by various 

mechanisms inherent in each system for the formation of 

random variables of the related parameters. Herewith, to 

the utmost, the nature of the mathematical description of 

the procedure of functioning of such systems is 

determined by the type of probability-theoretic models of 

the dynamics of system transitions from one possible 

state to another. The complexity level of solving the 

problems of analyzing such systems and managing them 

is determined by the type of dynamics models of these 

systems. Let's briefly analyze the traditional approaches. 

Analyzing known results 

The simplest model of system dynamics occurs 

unless all procedures within the system are Markov ones. 

In this event, a set of differential equations of 

A.N. Kolmogorov [1, 2] is used to analyze the system, 

obtained as follows [3]. For arbitrary pair of possible 

states of the system (j, k), an indicator R(j,k) is entered, 

which shall be equal to 1 if a transition from the j-th state 

to the k-th one is possible in one step. Otherwise, 

R(j,k)=0. Now, for an arbitrary state k of the system, a set 

of Zk+ of its states is entered, from which a transition to 

state k is possible in one step, that is: 

{ : ( , ) 1},kZ j R j k+ = =  

and also, a set Zk
-of such states in which a transition from 

state k is possible in one step, that is: 

{ : ( , ) 1},kZ j R k j− = =  

Next, P k(t) is entered, which is a function 

specifying the probability that the system at time period t 

shall be in the state k, k ϵ Z, Z is the set of possible states 

of the system, Z = {0;1;2;...; n}. The A.N. Kolmogorov's 

differential equations system in regard of the functions  

Pk, k ϵ Z, is as follows 

( )
( ) ( ) , .

k k

k
jk j k kj

j Z j Z

dp t
P t P t k Z

dt + − 

= −         (1) 

Here λ jk is the rate of transition of the system from 

state j to state k, the parameter of the distribution density 

of the random duration of the system's stay in state j prior 

to the transition to state k, 

( ) , 0.jkt
jk jkt e t

−
= 


   

To solve the differential equations system (1), one 

should use the Laplace transformation, which converts 

differential equations into algebraic ones. As it is known 

[3, 4], the Laplace transformation of the function u(t) is a 

function 

 
0

( ( )) ( ) ( ).stL u t u t e dt F s


−= =  (2) 

Herewith the following important property of the 

Laplace transformation is used: 

 

0

( ( )) ( ) ( )
0

st stL u t u t e dt u t e


− − 

 = = +   
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0

( ) ( ( )) (0).sts u t e dt sL u t u


−+ = −  (3) 

By converting ratios (1) according to Laplace, we get 

( ) (0) ( ) ( ) .

k k

k k jk j k kj

j Z j Z

s s P s s
+ − 

− = −         (4) 

Upon the reduction of such terms, the system of 

linear algebraic equations (4) shall be as follows 

 

00 0 01 1 0 0

10 0 11 1 1 1

0 0 1 1

( ) ( ) ... ( ) ;

( ) ( ) ... ( ) ;

...

( ) ( ) ... ( ) .

n n

n n

b s b s b s C

b s b s b s C

b s b s b s Cn n nn n n

 + + + =

 + + + =




+ + + =

  

  

  

 (5) 

Following the solution of the equations system (5) 

according to Cramer's rule [5], we get 

( )
( ) , 0,1,2,...,

( )

i
i

D s
s i n

D s
= = , 

where Di(s), D(s) are the determinants of the related 

matrices. 

Next, the inverse Laplace transformation is 

performed, while providing the required set of functions 

P k(t), k = 0,1,...,n. 

In terms of practice, the maximum variables of the 

obtained functions are of the greatest interest, i.e., 

variables equal to 

lim ( ) , 0,1,..., ,k k
t

P t P k n
→

= =  

Herewith the differential equations (1) are 

simplified to as follows: 

 , 0,1,2,...,

k k

jk j k kj

j Z j Z

P P k n
+ − 

− =   . (6) 

The solution of this linear algebraic equations 

system, being easily obtained for any set of rate variables 

(λjk), determines the required distribution of system 

states. (Pk), k=0,1,…,n. It is enough to analyze a specific 

system, thus in the predominant number of known works, 

the problem solution is limited thereto [6, 7]. However, 

the problems of managing the system resource to increase 

its efficiency the analytical expressions are required that 

explicitly reflect the dependences of the probabilities of 

system states on the values of related parameters. The 

equations system (6) allows to obtain the required 

analytical ratios unless the system order is minor (n≤5). 

But the technical and computational complexity of 

solving this system "manually" along with an increase in 

the problem dimension rapidly becomes difficult to 

overcome [6, 7]. This circumstance manifests itself 

especially demonstratively unless the system under 

consideration is multi-threaded. Let's enter, for instance, 

a graph of states and transitions of the simplest triple-

threaded two-phase system (Fig. 1). This system has 

27 states. It is difficult to analyze such a system using 

conventional methods. Pursuant thereto, the purpose of 

the study is to develop a method for calculating 

management in a high-dimensional Markov system. 

 

Fig. 1. Graph of states and transitions 

in a triple-thread two-phase Markov system 

Development of a method for analytical 

calculation of system states probabilities 

To obtain the required analytical expressions, one 

should use a technique based on the idea of decomposition 

of states [8]. The related computational procedure is 

implemented as follows. Initially, the entire set of possible 

system states Z is divided into non-overlapping subsets  

(Z1, Z2, ..., Zn), U Zk=Z, ∩Zk= ᴓ. The set of states included 

in a particular subset shall be called the related group state. 

At the first step of the procedure, a state transition matrix 

is formed for each group state, using which a system of 

linear algebraic equations is given with respect to the 

probabilities of states of this subset. 

The solution of this equations system determines 

the conditional distribution of states of the allocated 

group state. At the second step, the probabilities of 

transitions from each group state to other states are 

calculated. For the allocated pair of group states, the 

probability of transition from the first state to the second 

one is equal to the sum of productions of the conditional 

probabilities of each state of the first subset multiplied by 

the probabilities of transition to incident states from the 

second subset. The aggregate of calculated probabilities 

of transitions between group states is used to find the 

distribution of group states. At the final step of the 

procedure, the system states probabilities are determined. 

Herewith the probability of a particular state from a 

certain group state is determined by the production of 

both the conditional probability of this state and the 

probability of the related group state. 

Let's consider the simplest instance of this approach 

implementation. Let the graph of states and transitions 

for a double-channel Markov system along with two 

independent incoming threads is as shown in Fig. 2, 

where, λ 1 is the rate of the first incoming thread, μ1 is the 

rate of the first thread requests servicing, λ2 is the rate of 
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the second incoming thread, μ2 is the rate of the second 

thread requests servicing. 

 

 

Fig. 2 Graph of states and transitions 

 

Let's make a Kolmogorov equations system 

concerning the required probabilities 

1 10 2 01 1 00 2 00

1 00 2 11 1 10 2 10

2 00 1 11 1 01 2 01

00 01 10 11

0,

0,

0,

1,

+ − − =

 + − − =


+ − + =


+ + + =

       

       

       

   

 

or, upon ordering the addends in each of the equations, 

we get 

1 2 00 2 01 1 10

2 00 2 1 01 1 11

1 00 1 2 10 2 11

00 01 10 11

( ) 0,

( ) 0,

( ) 0,

1.

+ − − =

+ − + =

− + + =

+ + + =

      

      

      

   

 

Let's enter 

1 2 2 1

2 2 1 1

1 1 2 2

00

01

10

11

0

0
;

0 ( )

1 1 1 1

0

0
; .

0

1

H

B

− − − 
 

− =
 − +
 
 

   
   
   = =
   
   

  

   

   

   










. 

Then 

 Hπ=B, from which π=H-1 B. (7) 

The obtained ratio allows to easily find a numerical 

solution, however, obtaining first-order definable ratios 

describing the analytical dependence of states 

probabilities on the transition rates even in this simple 

problem causes a rather cumbersome procedure. In this 

regard, one should use the technology of decomposition 

of the system structure. 

Let's enter a set of lumped states E 0 and E 1: 

 0 00 10 0 01 11{ , }, { , }E S S E S S= = . (8) 

Herewith the conditional probability distributions 

of the system staying in the states of subsets E0, E1 are as 

follows 

 1 1
0 00 10

1 1 1 1

ˆ ˆ ˆ( , ) ,P P P
 

= =  
+ + 

 

   
, (9) 

 1 1
1 01 11

1 1 1 1

ˆ ˆ ˆ( , ) ,P P P
 

= =  
+ + 

 

   
, (10) 

The probability of the system transition from the 

lumped state E0 to the lumped state E1 is equal to 

 2 2
01 00 10

1 2 2 1

ˆ ˆW P P= +
+ +

 

   
. (11) 

In like manner, the probability of the system 

transition from the lumped state E1 to the simplified state 

E0 is equal to 

 2 2
10 01 11

1 2 1 2

ˆ ˆW P P= +
+ +

 

   
. (12) 

Pursuant thereto, the stationary probabilities of 

the system staying in the lumped states E0 and E1 are 

equal to 

 10 01
0 1

01 10 01 10

{ , } ,
W W

Q Q Q
W W W W

 
= =  

+ + 

. (13) 

Then the stationary probabilities of the system 

staying in its possible states are determined by the 

following ratio 

 00 00 0 10 10 0

01 01 1 11 11 1

ˆ ˆ; ;

ˆ ˆ; .

P Q P Q

P Q P Q

= =

= =

 

 
  (14) 

Let's perform the required calculations. Let's 

substitute (9), (10) in (11), (12) 

1 2 1 2
01

1 1 1 2 1 1 2 1

W =  + 
+ + + +

   

       
, 

1 2 1 2
10

1 1 1 2 1 1 1 2

W =  + 
+ + + +

   

       
. 

Next 

 10
00 00 00

0110 01

10

1ˆ ˆ

1

W
P P

WW W

W

= =
+

+

 . (15) 

Since 

 

1 2 1 2
01

1 1 1 2 1 1 2 1

2 1 1

1 1 2 1 2 1

2
2 1 2 1 1 2

1 1 1 2 2 1

2 2 2 2
1 2 2 1 1 2 2 1

1 1 1 2 2 1

( )

( )( )( )

,
( )( )( )

W =  +  =
+ + + +

 
= + = 

+ + + 

+ +
= =

+ + +

+ + +

+ + +

   

       

  

     

     

     

       

     
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1 2 1 2
10

1 1 1 2 1 1 1 2

2 1 1

1 1 1 2 1 2

2 2
2 1 1 2 1 1 2

1 1 2 1 1 2

2 2 2 2
2 1 1 2 2 1 1 2

1 1 2 1 1 2

( )

( )( )( )

,
( )( )( )

W =  +  =
+ + + +

 
= + = 

+ + + 

+ + +
= =

+ + +

+ + +
=

+ + +

   

       

  

     

      

     

       

     

  

then 

( )( )

( ) ( )( )

2 2
1 2 2 1

2 1 1 2
2 2

1 2 2 101

2 2
10 2 1 1 2

1 2 2 1
2 2

2 1 1 2

1 2 2 1 1 2 1 2

2 1 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 2 1

1 2 1

( )( )

( ) ( )

( )( )

( )( )

( ) ( )

W

W

 + +
  + +
 + + 

= =
 + +
  + +
 + + 

+ + +
= 

+ +

+ +
 =

+ + +

+ + +
=

   
   

   

   
   

   

       

   

   

       

       

  ( ) ( )( )

( )

( )

( )

( ) ( )

( )

2 1 2 1 2

1 1 2 2

2 1 2 1 1 1

1 1 2 2 2 2

2 1 1 2

2 2 1 2 2 1

1
.

1 1

=
+ + +


+

+ +
=


+

+  +

+ +

    

   

     

     

   

       

(16)

 

Let's enter new variables: 1 2
1 2

1 2

;x x= =
 

 
. Then 

(15) considering (16) shall be as follows: 

 

1
00

1

2 2
1

1 1
1

1 2 2

2 2
2 1 2

1 1

1

1

1

1

(1 ) 1

1

1
.

1 1

x

x

x

x
x x x

x x x

x

x A

= =
 

+ 
+ + 

 + +
 

+ 
 + +
  

= 
+ +



 

 

 

 

. (17) 

Next, considering (14) we get: 

1
10

1 1

1

1A
= 

+ +




 
; 

 2
01 1

2 2

1
;

1 A−
= 

+ +




 
 (18) 

 2
11 1

2 2

1

1 A−
= 

+ +




 
   

Let's analyze the obtained ratios. Let  

λ1=λ 2, μ1=λ1, μ2=λ2.  

Then in such a system that is completely symmetric 

in respect of all parameters, the probabilities of all states 

shall be the same and, as follows from (17), (18), equal 

to 0.25. Within normal functioning system, the request 

servicing rate is higher than that of the reception thereof, 

that is, μ 1>λ>1, μ 2>λ>2, i.e., x 1>1>, x 2>1>. Herewith 

the probability π00, which determines the system 

efficiency, will be as higher, as greater the variables x1 

and x2. The problem of optimizing a resource that can be 

used to increase the servicing rate, shall be provided with 

a restriction 

 1 2 1 2,x x c x >1, x >1+   (19) 

Now this resource allocation problem is formulated 

as follows: let's find a set (x1, x2) satisfying (19) and 

maximizing (17). The complexity of the analytical 

description of the objective function (17) restricts the 

possibility to solve the resulting mathematical 

programming problem using standard methods of both 

the first and second orders. In this context, one should use 

the downhill simplex method [7] to solve the problem. 

The objective function of the problem contains addends 

specifying penalties for violating restrictions (19): 

  

 

1 2

2
00 1 2 0 1 2

2
2

1

( , )

( , ) max{( ), }

1 min{1, } .i i
i

F x x

x x R x x c c

R x

=

=

= + − +

+ −

  (20) 

Herewith the component  

  
2

0 1 2max{( ), }R x x c c+ −   

determines the penalty unless the variable 1 2( )x x+  

exceeds c. Components  

  
2

1 min{1, }i iR x−    

act in a similar way unless the values of variables x1 or x2 

shall be less than one. 

The coordinates of the vertices of the initial simplex 

A, B, C are given by the matrix 

1 2

2 1

1 1 1

1 1 1

d d

d d

+ + 
=  

+ + 
 ; 

( ) ( )1 2
1 1

3 1 0.96; 3 1 0.26
2 2 2 2

d d= + = = − = . 

The coordinates of the vertices of this simplex were 

chosen so that the distance between any two vertices was 

equal to one. Indeed, let the vector 
1

1

 
 
 

 sets the 

coordinates of vertex A of the simplex, the vector 

( )

( )

1
1 3 1

2 2

1
1 3 1

2 2

 
+ + 

 
 
+ − 

 

 sets the coordinates of vertex B and 
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the vector 

( )

( )

1
1 3 1

2 2

1
1 3 1

2 2

 
+ − 

 
 
+ + 

 

 sets the coordinates of 

vertex C. 

Herewith 

 ( ) ( )

( ) ( )

2 2
1 1

3 1 3 1
2 2 2 2

1 1
4 2 3 4 2 3 1;

8 8

AB ACR R= =

   
= + + − =   

   

= + + − =

  

 
( ) ( )

2

2

1 1
2 3 1 3 1

2 2 2 2

1 1
2 1.

2 2 2 2

BCR
    

= + + − =    
    

 
= + = 

 

  

Resulting from the implementation of the downhill 

simplex method procedure the c=5 shall get a vector 

specifying the distribution (x1, x2) = (3.06; 1.94), while 

maximizing the system state probability whereby both 

channels are free.  

Herewith, π00=0.44, π10=0.14, π01=0.28, π11=0.14. 

The problem has been solved. 

The proposed decomposition technology of state 

aggregation allows to solve the problem of finding 

analytical ratios linking the numerical values of the 

parameters of high-dimensional Markov systems with its 

efficiency. These ratios provide an opportunity to 

formulate a criterion for the system efficiency and, thus, 

to set and solve the problems of system resource 

management. It should be also noted, that when solving 

a management problem in an ultra-high-dimensional 

Markov system, a hierarchically organized multi-stage 

decomposition can be used so that the problem dimension 

does not exceed the permissible value at each stage. An 

important area of further research in terms of practice is 

the dissemination of a decomposition approach to 

analyze multi-threaded systems with a priority set, for 

instance, using the pair-wise comparison method [9].  

Summary 

The known methods for solving the problem of 

Markov systems have been analyzed. It was confirmed 

that the conventional procedure based on solving a 

Kolmogorov equations system provides a numerical 

solution for problems of almost any dimension. 

It was demonstrated that the computational 

complexity of obtaining analytical expressions for 

calculating the distribution of system states increases 

rapidly with an increase in the number of states and 

becomes compelling for systems of actual dimension. 

A method for calculating the probabilities of states 

of a Markov system was proposed based on the 

decomposition of states graph, which reduced high 

dimension problems to a sequence of low-dimension 

ones. 

The proposed approach allows to obtain analytical 

ratios that establish a relationship between the system 

probability distribution and a set of its initial parameters 

(system transition rates). The obtained ratios allow for 

system resources management to increase its efficiency. 
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Управління у марківських системах високої розмірності 

Л. Г. Раскін, Л. В. Сухомлин, Д. О. Сагайдачний, Р. О. Корсун  

Анотація .  Розглянуто завдання аналізу марківських систем із великою кількістю станів. Традиційна 

обчислювальна процедура отримання аналітичних співвідношень для розрахунку розподілу ймовірностей станів системи 

заснована на використанні системи диференціальних рівнянь Колмогорова. Сформована в подальшому система лінійних 

алгебраїчних рівнянь легко вирішується чисельно. Однак складність отримання аналітичного рішення швидко зростає зі 

збільшенням розмірності задачі. У зв'язку з цим мета - розробка ефективного методу дослідження марківських систем, 

обчислювальна процедура якого забезпечує можливість отримання рішення для моделей високої розмірності. Метод 

заснований на декомпозиції графа станів та переходів системи. Одержувані аналітичні вирази дозволяють поставити і 

вирішити задачу раціонального розподілу ресурсу для зміни значень параметрів системи з підвищення її ефективності. 

Метод забезпечує можливість вирішення завдань управління у марківських системах з великою кількістю можливих 

станів. Розглянуто приклад застосування методу. 
 

Ключові  слова:  Марківська система, розрахунок розподілу ймовірностей станів, декомпозиційна 

обчислювальна схема, управління ймовірностями станів. 


