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MANAGEMENT IN HIGH-DIMENSIONAL MARKOQOV SYSTEMS

Abstract. A problem of analyzing Markov systems along with a large number of states has been considered. The
conventional computational procedure for obtaining analytical ratios for calculating the distribution of system states is based
on the use of a system of Kolmogorov differential equations. The system of linear algebraic equations being formed later can
be easily solved numerically. However, the complexity of obtaining an analytical solution increases rapidly with the increase
in the problem dimension. In this regard, the purpose is to develop an effective method for studying Markov systems, the
computational procedure of which ensures the possibility of obtaining solutions for high-dimensional models. The method is
based on the decomposition of states graph and system transitions. The obtained analytical expressions allow to set and solve
the problem of rational resource distribution for changing the values of the system parameters to increase its efficiency. The
method ensures the possibility of solving management problems in Markov systems along with a large number of possible
states. An example of method application has been considered.
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Introduction

The procedures of functioning of a significant part
of modern complex technical, environmental, military
and other systems can be described by a mathematical
model of the same type in many important respects.
Firstly, such systems can be in one of the many possible
states at any specific time. Secondly, the system shifts
from one possible state to another under the impact of one
or more random events (requests, service requirements,
etc). Thirdly, the service duration of each requirement is
a continuous random variable, the distribution density of
which is assumed to be well known (or it can be
determined by the results of statistical tests). Fourthly,
the system is manageable in the sense that it has a limited
consumable resource that can be used to change certain
given system parameters to increase its efficiency. The
similarity of various systems under these distinctive
features predetermines the possibility of using the same
type of mathematical models to analyze them.

On the other hand, the observed differences in the
functioning procedures for specific systems are primarily
due to differences in their individual specifications. The
most important role here is played by various
mechanisms inherent in each system for the formation of
random variables of the related parameters. Herewith, to
the utmost, the nature of the mathematical description of
the procedure of functioning of such systems is
determined by the type of probability-theoretic models of
the dynamics of system transitions from one possible
state to another. The complexity level of solving the
problems of analyzing such systems and managing them
is determined by the type of dynamics models of these
systems. Let's briefly analyze the traditional approaches.

Analyzing known results

The simplest model of system dynamics occurs
unless all procedures within the system are Markov ones.
In this event, a set of differential equations of
AN. Kolmogorov [1, 2] is used to analyze the system,
obtained as follows [3]. For arbitrary pair of possible
states of the system (j, k), an indicator R(j,k) is entered,

which shall be equal to 1 if a transition from the j-th state
to the k-th one is possible in one step. Otherwise,
R(j,k)=0. Now, for an arbitrary state k of the system, a set
of Z. of its states is entered, from which a transition to
state k is possible in one step, that is:

Zy ={i:R(j.k) =1},

and also, a set Zyof such states in which a transition from
state k is possible in one step, that is:

Zi ={j:R(k, j) =1},

Next, P () is entered, which is a function
specifying the probability that the system at time period t
shall be in the state k, k € Z, Z is the set of possible states
of the system, Z = {0;1;2;...; n}. The A.N. Kolmogorov's
differential equations system in regard of the functions
Py, k € Z, is as follows

dp, (t

Pl 5 P00 T Agkez @

jeZk+ jezZy

Here 1 j is the rate of transition of the system from
state j to state k, the parameter of the distribution density
of the random duration of the system's stay in state j prior
to the transition to state k,

P () = ijke_ijkt,t >0.

To solve the differential equations system (1), one
should use the Laplace transformation, which converts
differential equations into algebraic ones. As it is known
[3, 4], the Laplace transformation of the function u(t) is a
function

L(u(t)) = Ofu(t)e-St dt = F(s). )
0

Herewith the following important property of the
Laplace transformation is used:

2 _OO 2 —st —st o
L(u'(t)) = g u'(Detdt=u(ne |+
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+5Tu(t)e_5tdt =sL(u(t)) —u(0).
0

)

By converting ratios (1) according to Laplace, we get

st (8)-R(0) = D Ajm(8)—mc(8) D Ag- (4)
jeZE’ jezZy
Upon the reduction of such terms, the system of
linear algebraic equations (4) shall be as follows

boo 770 (8) +bgg 71.(8) + ...+ g 7, (8) = Cp;

b_l_oﬁo(s)'i'b_l_lﬂ'l(s)‘i‘...‘f'b_l_n 7Z'n(S)=C1; (5)

bno ﬂo(s)+bn1 7[1(5)+...+bnn 7Z'n (S) = Cn.

Following the solution of the equations system (5)
according to Cramer's rule [5], we get
mi(s) =2,
D(s)
where Di(s), D(s) are the determinants of the related
matrices.

Next, the inverse Laplace transformation is
performed, while providing the required set of functions
P«(t),k=0,1,..,n.

In terms of practice, the maximum variables of the
obtained functions are of the greatest interest, i.e.,
variables equal to

tIim R @) =R, ,k=01..,n,

=0,12,...,n,

Herewith the differential
simplified to as follows:

> AP R X Agk=012,..n.

jezit jezi

equations (1) are

(6)

The solution of this linear algebraic equations
system, being easily obtained for any set of rate variables
(Aj), determines the required distribution of system
states. (Px),_k=0,1,...,n. It is enough to analyze a specific
system, thus in the predominant number of known works,
the problem solution is limited thereto [6, 7]. However,
the problems of managing the system resource to increase
its efficiency the analytical expressions are required that
explicitly reflect the dependences of the probabilities of
system states on the values of related parameters. The
equations system (6) allows to obtain the required
analytical ratios unless the system order is minor (n<5).
But the technical and computational complexity of
solving this system "manually" along with an increase in
the problem dimension rapidly becomes difficult to
overcome [6, 7]. This circumstance manifests itself
especially demonstratively unless the system under
consideration is multi-threaded. Let's enter, for instance,
a graph of states and transitions of the simplest triple-
threaded two-phase system (Fig. 1). This system has
27 states. It is difficult to analyze such a system using
conventional methods. Pursuant thereto, the purpose of
the study is to develop a method for calculating
management in a high-dimensional Markov system.

Fig. 1. Graph of states and transitions
in a triple-thread two-phase Markov system

Development of a method for analytical
calculation of system states probabilities

To obtain the required analytical expressions, one
should use a technique based on the idea of decomposition
of states [8]. The related computational procedure is
implemented as follows. Initially, the entire set of possible
system states Z is divided into non-overlapping subsets
(Z1, Z2, ..., Zn), U Zx=Z, NZ= w=. The set of states included
in a particular subset shall be called the related group state.
At the first step of the procedure, a state transition matrix
is formed for each group state, using which a system of
linear algebraic equations is given with respect to the
probabilities of states of this subset.

The solution of this equations system determines
the conditional distribution of states of the allocated
group state. At the second step, the probabilities of
transitions from each group state to other states are
calculated. For the allocated pair of group states, the
probability of transition from the first state to the second
one is equal to the sum of productions of the conditional
probabilities of each state of the first subset multiplied by
the probabilities of transition to incident states from the
second subset. The aggregate of calculated probabilities
of transitions between group states is used to find the
distribution of group states. At the final step of the
procedure, the system states probabilities are determined.
Herewith the probability of a particular state from a
certain group state is determined by the production of
both the conditional probability of this state and the
probability of the related group state.

Let's consider the simplest instance of this approach
implementation. Let the graph of states and transitions
for a double-channel Markov system along with two
independent incoming threads is as shown in Fig. 2,
where, 11 is the rate of the first incoming thread, u is the
rate of the first thread requests servicing, 1 is the rate of
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the second incoming thread, u is the rate of the second
thread requests servicing.

0,0 \4

A

TNy

1.0

M1

A M2 Az Hz

3 Ay

0,1 \4

'

/ 1.1

H1

Fig. 2 Graph of states and transitions

Let's make a Kolmogorov equations system
concerning the required probabilities

710 + Ha7mo1 — 7m0 — 427000 =0,

Moo + ppmyy — g — Ao =0,

Ap7moo + 71y — A 7moy + a7y =0,
Tog + o1 + 7m0 + 7111 =1,

or, upon ordering the addends in each of the equations,
we get

(44 + A2)mo0 — Ho7o1 — tamg =0,
Mmoo + (g — ) 7mor + tamyq =0,
Mmoo — (w4 + Ap) g + ppmyg =0,

7Too + o1 7710 T 7011 = 1.

Let's enter
M—lp i —H 0
yo| 2 A 0 M.
A 0 —(u+h) w|
1 1 1 1
71'00 0
0
= ro1 B= .
72'10 0
72'11 1
Then
Hr=B, from which z=H"! B. @)

The obtained ratio allows to easily find a numerical
solution, however, obtaining first-order definable ratios
describing the analytical dependence of states
probabilities on the transition rates even in this simple
problem causes a rather cumbersome procedure. In this
regard, one should use the technology of decomposition
of the system structure.

Let's enter a set of lumped states E and E ;:

Eo ={S00,S10}: Eo ={So1,S11}- 8)

Herewith the conditional probability distributions
of the system staying in the states of subsets Eo, E; are as

follows
5 _ (B B mo A
P = (Foo. Fo) =( —J 9
mth mtAy
s (B B m_ A
R =(Po1, R1) =[ —] (10)
M+l mtAh

The probability of the system transition from the
lumped state Eo to the lumped state E; is equal to

Woz = Poo 2,22

. 11
A+ 1Oﬂerﬂl D

In like manner, the probability of the system
transition from the lumped state E; to the simplified state
Eo is equal to

5 H 5 H2
Wio = Por +Ry : (12)
A+ 1 + iy
Pursuant thereto, the stationary probabilities of
the system staying in the lumped states Eo and E; are
equal to

Wio Woy } (13)
Wor +Wyg Wog +Wig

Q ={Q0’Q1}={

Then the stationary probabilities of the system
staying in its possible states are determined by the
following ratio

700 = PooQo: 7710 = FoQos

. . (14)
7o1 = Po1Qr; m1 = PiQp.
Let's perform the required calculations. Let's
substitute (9), (10) in (11), (12)
Wy = 4. h A b '
Mt M+l o+t Lty
W ——ta M2, Ao
Mt Mty A
Next
A W].O A 1
700 = Pog = Poo (15)
Wig +Wos 14 Wou
Wi
Since
) A % A
Wor = =

_ﬂ1+ﬂ'l.ﬂ'1+12+/11+ﬂ1.12+ﬂ1
A [ M A jz
mru\ b+l Aot

_ A (tay +ﬂ12+ﬂi/12) _
(tn + ) (A + A)(Ap + 14)

thg” + dpin® + g” + i’
(t+2)( A+ ) (Ao + 1)
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Mty Mty ot Tt

_ M [ H Gl J:
A\ Mty gt
2 2
_ (" gy + A"+ )
(ea + ) (g + 24 )y + 14)

2 2 2 2
_ Hopn” + gy + "+ Ayt
(et + 20)(ptp + 20 ) + 112)

then

[ﬂlﬂzz + A +
Wy +4A + 4

Wi pot” + phpty +
{ ) ) (A +42) (A + 1)
+p M+ Al

_ il tm)+ g (Lt )
(A + 1) (M + A2)

(4 + 1) (14 + 1)

X —

pttp (e + 1) + A pip (g + 1)
(1102 /(A + X))+ 2020 (2 + 1))

(rattn /(P + g )+ Aapan [ (1 + 117 )

(ta/%) 2 . A

I+ h/h  Ap/h+m/h
(/%) 12/ 2 Lk

Y+ (/7)) (YA2)+
/) +(12/ %)) 2

Let's enter new variables: x = %; Xp = 2 Then
2

J(#z +4 )(#1+#2)

(16)

(15) considering (16) shall be as follows:

X

TT| = — — =
00 X 1

+

1+i—2 &,

L4
@+x) |1+ A
X1 Xo + X2

. (17)

%

X+ Xo ——

Zl

X 1

Clex 1+A

1+x2iz
A

Next, considering (14) we get:
A1
g+ A+1’

M 1
A +y 1+ AL
- 1
n=""":

p+py 1+A7L

(18)

Let's analyze the obtained ratios. Let
M=N 2, =A1, po=As.

Then in such a system that is completely symmetric
in respect of all parameters, the probabilities of all states
shall be the same and, as follows from (17), (18), equal
to 0.25. Within normal functioning system, the request
servicing rate is higher than that of the reception thereof,
that is, p1>A>1, u2>1>», i.e., x1>1>, x,>1>. Herewith
the probability mg, which determines the system
efficiency, will be as higher, as greater the variables x;
and x2. The problem of optimizing a resource that can be
used to increase the servicing rate, shall be provided with
a restriction

X +X <C, %>l x>1 (19)

Now this resource allocation problem is formulated
as follows: let's find a set (xi, X2) satisfying (19) and
maximizing (17). The complexity of the analytical
description of the objective function (17) restricts the
possibility to solve the resulting mathematical
programming problem using standard methods of both
the first and second orders. In this context, one should use
the downhill simplex method [7] to solve the problem.
The objective function of the problem contains addends
specifying penalties for violating restrictions (19):

Fx, %) =
= 790 (X1, X2 )Rg [max{(x + Xp), c}—c]2+

2
+>_ Ri[1-min{1, xi}]z.

i=1

(20)

Herewith the component
Ro [max{(x; + X,),c}— c]2
determines the penalty unless the variable (X, +X5)
exceeds c. Components
R; [1—min{1, x; }]2

act in a similar way unless the values of variables x; or X,
shall be less than one.

The coordinates of the vertices of the initial simplex
A, B, C are given by the matrix

(1 di+1 dp+1)
1 dy+1 dp+1)

d, :%(ﬁu) —0.96; d, =%(¢§-1) —0.26.

The coordinates of the vertices of this simplex were
chosen so that the distance between any two vertices was

1
equal to one. Indeed, let the vector (J sets the

coordinates of vertex A of the simplex, the vector

1+%(\/§+1>

1+%(\E—1)

sets the coordinates of vertex B and
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e
the vector 212 sets the coordinates of
1+——(+3+1
zﬁ( )
vertex C.
Herewith
Rag =Rac =

-t (gt -
\/ 4+2:3)+ (4 2\3) =1

e gt 4)- (54 -

_ 2[ 1 1 T _
22 22

Resulting from the implementation of the downhill
simplex method procedure the c=5 shall get a vector
specifying the distribution (xi1, X2) = (3.06; 1.94), while
maximizing the system state probability whereby both
channels are free.

Herewith, TEoo:0.44, 7'510:0.14, 11701:0.28, 1'[1120.14.
The problem has been solved.

The proposed decomposition technology of state
aggregation allows to solve the problem of finding
analytical ratios linking the numerical values of the
parameters of high-dimensional Markov systems with its
efficiency. These ratios provide an opportunity to

formulate a criterion for the system efficiency and, thus,
to set and solve the problems of system resource
management. It should be also noted, that when solving
a management problem in an ultra-high-dimensional
Markov system, a hierarchically organized multi-stage
decomposition can be used so that the problem dimension
does not exceed the permissible value at each stage. An
important area of further research in terms of practice is
the dissemination of a decomposition approach to
analyze multi-threaded systems with a priority set, for
instance, using the pair-wise comparison method [9].

Summary

The known methods for solving the problem of
Markov systems have been analyzed. It was confirmed
that the conventional procedure based on solving a
Kolmogorov equations system provides a numerical
solution for problems of almost any dimension.

It was demonstrated that the computational
complexity of obtaining analytical expressions for
calculating the distribution of system states increases
rapidly with an increase in the number of states and
becomes compelling for systems of actual dimension.

A method for calculating the probabilities of states
of a Markov system was proposed based on the
decomposition of states graph, which reduced high
dimension problems to a sequence of low-dimension
ones.

The proposed approach allows to obtain analytical
ratios that establish a relationship between the system
probability distribution and a set of its initial parameters
(system transition rates). The obtained ratios allow for
system resources management to increase its efficiency.
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YnpaBaiHHs y MapKiBCBKHX CHCTeMaX BUCOKOI po3MipHOCTi
JI. T. Packin, JI. B. Cyxommun, []. O. Caraiinaunuii, P. O. Kopcyn

AnoTanis. Po3msiHYTO 3aBIaHHA aHANi3y MAapKiBCBKUX CHCTEM 13 BEJIHKOI KIJIBbKICTIO cTaHiB. TpaaumiiiHa
o0uKCIIOBaNIbHA MPOLIEYPa OTPUMAHHS aHANITHYHUX CITIBBIHOLIEHD JUIS PO3PAaXyHKY PO3IOALTY HMOBIPHOCTEH CTaHIB CHCTEMH
3aCHOBaHa Ha BUKOPUCTaHHI cucteMu mudepernianbHux piBHsHb Koamoroposa. ChopMoBaHa B oJajbLIOMy CHCTEMA JHIHHNX
anreOpaidHuX PiBHSHB JETKO BUPILIYEThCs YUceNbHO. OHAK CKIIAJHICTh OTPUMAHHS aHATITHYHOTO PIIICHHS MIBUAKO 3POCTAE 3i
301IbLICHHSIM PO3MIPHOCTI 3a1aui. Y 3B'SI3Ky 3 UM MeTa - po3poOka e()eKTUBHOIO METO/Y JOCIIKCHHS MapKiBCbKUX CHCTEM,
o0uKCIIIOBaJIbHA TIPOLIEypa SKOro 3abe3neuye MOXIMBICTh OTPHUMAaHHS PillIHHS Ui Mojeieil BUCOKOI po3MmipHocTi. Meron
3aCHOBAaHMI Ha JEKOMIIO3UIIi rpada cTaHiB Ta mepexoniB cucteMu. Onep:KyBaHi aHANITHYHI BUPAa3H IO3BOJSIOTH MOCTABHUTH i
BUPILINTH 33J]ady palioHaIBHOTO PO3MOALUTY pecypcy Uil 3MiHM 3Ha4eHb MapaMeTpiB CHCTEMH 3 MiABUIICHHS 11 e()eKTHBHOCTI.
Meron 3abe3medye MOXIMBICTH BUPIIICHHS 3aBJaHb YNPABIiHHSA y MapKIBCBKHX CHCTEMAaxX 3 BEJIMKOIO KUIBKICTIO MOXIIMBUX
cTaHiB. PO3riIsiHyTO NpHKIIag 3aCTOCYBaHHS METOY.

KawovyoBi caoBa: MapkiBcbka cCHCTEMa, pO3paxyHOK pO3MOJINY WMOBIpHOCTEH CTaHiB, JIEKOMIO3HLiHA

o0YHCITIOBaIbHA CXEMa, YIIPaBIiHHS IMOBIPHOCTSIMU CTaHiB.
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