Cucmemu ynpasiinns, nagizauii ma 36'a3xy, 2021, eunyck 2(64)

ISSN 2073-7394

UDC 621.396

Ihor Ivanisenko

doi: 10.26906/SUNZ.2021.2.074

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

DYNAMIC METHOD OF DISTRIBUTED SYSTEM LOAD BALANCING EVALUATE

Abstract. Subject of study is method of estimating resources of the distributed system like a part of scientific
problem related to the load balancing and efficient utilization of resources of the distributed system. The paper
presents a method of estimating resources of the distributed system, such as network nodes, the processor, memory,
and band-width. The proposed method allows to calculate the loading of each node separately in a distributed system
and the entire system. Classes of service flows taken into account in the calculation of these resources loading. The
complex value of imbalance of load server entered, which taking into ac-count the weight coefficients for processor,
memory, and network bandwidth. These weight coefficients allow to select the importance of each network resource
(CPU, memory and bandwidth) compared with each other. Also, this method allows to calculate the imbalance of the
system servers. Using the method in load balancing allows to distribute requests by servers such way that deviation
of the load servers from the average value was minimal, that allow to provide higher system performance parameters
(utilization efficiency) and faster processing flows. Conclusions. The work proposed a solution to the actual
scientific problem of assessing the load of nodes of a distributed system. The proposed method is based on
calculating the processor load, memory load, and channel bandwidth by flows of different service classes. Also
introduced a complex value of server load imbalance, taking into account weights for processor, memory and
network bandwidth. Accordingly, this method allows you to calculate the imbalance of all servers in the system, the
average operating time for various balancing algorithms and the efficiency of using the system resources.

Keywords: load balancing; distributed system; multifractal traffic; resource utilization; self-similar flow; imbalance.

Introduction

Problem formulation in general form. Currently,
along with the systematic increase in data transmission
rates in telecommunications, the share of interactive
traffic, which is extremely sensitive to the parameters of
the transportation environment, is increasing. To
provide the required amount of resources for the
transmission of various types of traffic that impose
different requirements on the characteristics of the
telecommunication network, various mechanisms for
ensuring QoS (Quality of service) are used. One of such
mechanisms is load balancing [1-3].

The load balancing system solves the problem of
ensuring the quality of service and increasing the
performance of distributed systems due to the optimal
distribution of tasks between the nodes of the computing
system. For the most complete use of all available
resources of a distributed system, various methods for
assessing the load of nodes and the system as a whole
are used.

Assessment of the load of a computational node
can be done in several ways. One of the analytical
methods, which consists in an approximate estimate of
the load of each object based on the data on the received
tasks. The advantage of the analytical method is that it
can accurately estimate the complexity of the problem.
The disadvantage of this method is that it can be rather
inaccurate if the model for estimating the speed of task
execution is inaccurate.

Another way to collect load data is to measure the
load of nodes. Most modern machines are equipped
with time counters (accurate to microseconds) that can
be used to measure the time taken to complete each
task.

The advantage of this method is that it is accurate
in most cases. The disadvantages include the following:
balancing strategies based on this method take into

account the past distribution of loads. If the complexity
of tasks changes in an unpredictable way, then the
method will be inaccurate.

The most famous studies in the field of balancing,
theoretical research and development of the
fundamental foundations of load distribution, in the
creation of a mathematical apparatus, models and
control methods for load distribution in distributed
systems, were carried out by such scientists as E.I.
Ignatenko [2], V.N. Tarasov [3], F. Wang [4], V.
Cardellini [1, 5], S. Keshav [6], Xing-Guo Luo, Xing-
Ming Zhang [7], Hisao Kameda, Lie Li [8], and many
other scientists working on load balancing problems.

The aim of the paper s to develop a method for
calculating the load of nodes and the imbalance of a
distributed system, based on the estimation of the load
of the processor, memory and channel bandwidth.

The analysis of the previous investigations and
publications. The task of load balancing in a distributed
info-communication system is, based on a set of tasks
involving the calculation and transmission of data, and
server systems of different capacity, to find a
distribution of tasks on servers that provides
approximately the same computational load of each
server and minimum transmission costs data. To
perform this task, various methods and algorithms of
load balancing can be used, which take into account the
estimates of the load of the computing node.

The most famous research in the field of load
management in distributed systems, balancing,
theoretical research and development of fundamental
foundations of load distribution, in the creation of
mathematical apparatus, models and control methods
for load distribution were engaged in such scientists as:
E.l. Ignatenko, VN Tarasov, F. Wang, V. Cardellini,
Xing-Guo Luo, Hisao Kameda, H. Mehta, P. Kanungo,
M. Casalicchio, Y.S. Hong, as well as other researchers
working on load balancing problems.

74

© Ivanisenko 1., 2021

Ingpopmauiiini mexuonozii

Scientists such as S. Keshav, O. Elzeki, M.
Reshad, H. Chen, Y. Hu, Shamsollah Ghanbari, Ratan
Mishra, Dhinesh Babu, and many others have developed
and improved load balancing algorithms.

Experimental research in recent decades has
shown that traffic in many multiservice computer
networks has self-similar (fractal) properties. The
reason for this effect is the distribution of files on the
servers, their size, typical user behavior and is largely
due to changes in network resources and network
topology.

Self-similar traffic causes significant delays and
packet losses, even if the total intensity of all flows is
far from the maximum allowable values.

There are a large number of publications devoted
to the analysis of fractal properties of traffic. Self-
similar properties of information flows are found in
local and global networks, in particular in Ethernet
traffic, ATM, TCP, IP, VoIP applications. K. Park, W.
Willinger, P. Abry, M. Taqqu, I. Norros, Potapov A.A.,
Tsybakov B.S., Shelukhin A.l.

The presence of self-similarity properties in the
information flows transmitted by customers significantly
affects the efficiency of distributed systems. This plays a
particularly important role in the operation of services
that provide the transmission of multimedia traffic and
real-time traffic. Thus, the task of developing and
analyzing load balancing methods that take into account
the self-similarity of traffic and loading of each node and
the entire distributed system is relevant.

Load balancing method proposed approach

The problem of balancing computational load
arises for several main reasons [1, 5, 8]:

- structure of a distributed
heterogeneous, different logical
different computing power;

- structure of a distributed system is also
heterogeneous, i.e. different computing nodes have
different performance;

application is
processes require

- structure of inter-node interaction s
heterogeneous, because ~ communication lines
connecting nodes can have different bandwidth

characteristics.

Depending on the task, you can use static or
dynamic balancing [9]. Static balancing is performed
before tasks start. However, preliminary allocation of
logical processes to processors (servers) has no effect.
This is due to the variability of the computing
environment (the node may fail), the busyness of the
node with other calculations.

One way or another, the gain from distributing
logical processes across servers in order to perform
parallel processing becomes ineffective. Dynamic
balancing provides for the distribution of the
computational load on the nodes during the execution of
tasks. The software that implements dynamic balancing
determines: load of computational nodes; throughput of
communication lines; amount of free memory; the
frequency of message exchanges between logical task
processes, etc. Based on the collected data on tasks and
the computing environment, a decision is made on the

distribution of tasks between network nodes.

The goal of load balancing can be formulated as
follows: based on a set of tasks, including computation
and data transfer, and a network of servers of a certain
topology, find such a distribution of tasks among
servers that provides approximately equal
computational load of servers and minimal data transfer
costs.

Usually, a practical and complete solution to the
load balancing problem consists of four stages [3, 5, 9,
16]: 1) estimation of the load of computational nodes; 2)
initiation of load balancing; 3) making decisions on
balancing; 4) distribution of tasks.

Let's describe with more details each stage of
balancing.

1. Assessment of the system load.

At this stage, the load on each server is calculated
by calculating the average utilization of the processor,
memory, network bandwidth of the i-th server. The
obtained information about the load is used for the
balancing process, firstly, to determine the occurrence
of an imbalance, and secondly, to determine a new
distribution of tasks by calculating the amount of work
required to move tasks. Hence, the quality of load
balancing work directly depends on the accuracy and
completeness of the information.

2. Initiation.

Performing load balancing too often can cause
tasks to slow down. The cost of balancing itself may
outweigh the potential benefits of balancing it.
Therefore, for the productivity of balancing, it is
necessary to somehow determine the moment of its
initialization. To do this, you should: determine the
moment when the load imbalance occurs; determine the
degree of need for balancing by comparing the possible
benefits of its implementation and the cost of it.

Load imbalance can be determined synchronously
and asynchronously. With synchronous imbalance
detection, all processors (servers on the network)
interrupt their work at certain times of synchronization
and determine the load imbalance by comparing the
load of an individual processor with the total average
load. With asynchronous imbalance detection, each
server keeps a history of its load. In this case, the time
of synchronization to determine the degree of imbalance
absence.

The amount of imbalance is calculated by a
background process running in parallel with the tasks.

3. Making decisions in balancing process.

Most of the strategies for dynamic load balancing
can be attributed to a class of centralized or a class of
fully distributed. With a centralized strategy, the
balancer collects global information about the state of
the entire computing system and decides to move tasks
for each of the servers. A fully distributed strategy runs
a load balancing algorithm on each server, exchanging
state information with other servers. Tasks are moved
only between neighboring processors.

4. Distribution of tasks.

There are many balancing (task distribution)
algorithms. However, each of the algorithms has both
advantages and disadvantages [10-16]. The most

75

Cucmemu ynpasiinns, nagizauii ma 36'a3xy, 2021, eunyck 2(64)

ISSN 2073-7394

commonly used load balancing algorithms are the
following: Round Robin Scheduling [6, 16], Max-Min
Algorithm [5], Compare and Balance [6] and others.
You can choose the most suitable algorithm depending
on the tasks at hand.

Let's take a closer look at the load balancing
method, which takes into account the multifractal
properties of additive traffic, and the calculation of the
imbalance of resources of the distributed system, which
allows to increase the use of system resources by
directing heterogeneous information flows to less
loaded resources.

Based on the multi-fractal properties of incoming
traffic, a dynamic method of balancing traffic is
proposed [15]. Depending on the changes in the
parameters of the input stream, various methods of
traffic management are used. Here is a step-by-step
description of the dynamic load balancing method:

Incoming streams are aggregated and processed in
accordance with the queue policy, creating a single flow
that has characteristics

V= {hhpge)

1. In the traffic that enters the balancer, a
“window” X of fixed length T is allocated.

2. We find traffic intensity, the selective value of
the function of the generalized Hurst index h(q), the
Hurst parameter value H = h(2), and the range of values

of the generalized Hurst index Ah = h(tmin)—h(tmax)

of the segment of traffic in the selected “window”.
3. We collect and analyze statistical information
by servers and channels: average rate of use of

bandwidth Netiki for the time period T, server status

CPUini , RAMir, average CPU load, and average usage

rate of i-server’s memory over a period of time T.

4. Based on the multi-fractal properties of the
traffic and the values of the laboriousness of the queries,
we calculate the set of vectors of the required resources

hgs =(CPU, Net,RAM)

for each gs-class of traffic:
Hgs if H<0,5;
Hgs + (H -0.5)py,

if 0.5<H <0.9, Ah<0.4;
Hgs + (H-0.5)(Ah-0.4)ny,

if 05<H <09 04<Ah<];
Hgs +Ho, if H>090r H >05, Ah>1,

new
Hgs =

where g it is determined in accordance with the class

of service and the necessary resources, the value o is
selected by the network administrator, taking into
account the network status. To reflect the change in the

multi-fractal properties of flows, the vectors of the
required resources pge’ are updated at regular intervals

and recalculated according to the formula.

The number of required resources does not change

(ngs' = ngs) if the traffic is a regular Poisson stream

(H =0.5) or has anti-spam properties (H <0.5). With
meaning 05<H <09 and small spread of data
(Ah<0.4) the value pgs increases in proportion to the

value of the Hurst index. When the Hurst index
0.5<H <0.9 and the large data scatter (0.4 <Ah<1)
value pgs increases, it is proportional to both

characteristics.
The number of required resources with the
maximum value pgs +pg is obtained with the value

H >0.9 or with persistent traffic (H >0.5) with a
range of values of the generalized Hurst index Ah>1.
After transferring the cost of all routes, the message
about the state of the paths is sent between the routers.

5. We calculate the distribution of streams by
servers based on the listed streams of servers based on
the listed values of labor intensity, intensity of traffic,
and the state of the server load and communication
channels.

6. Based on the data received, the server load is
determined in the next step.

7. Distribute traffic to servers, according to the
algorithm of balancing within each class of flow.

8. If all traffic could not be distributed, then we
allocate the remaining traffic among the amount of
resources available:

CPU(T), RAM (T), Net’(T).

The revaluation is not taken into account by the
algorithm, because it does not make any significant
changes.

9. We collect data on server’s loading

CPU'(T), RAM{ (T), Net{ (T)

and transfer them to the load balancing system to
calculate the new distribution of flows.

10. Shift the forward “window” X of length T to
the specified shift value AT ; we analyze the traffic and
calculate the next value of server load.

The developed load balancing method should
provide a statically uniform distribution of load on the
servers, high performance, throughput, fault-tolerance
(automatically detecting node failure and redistributing
the flow of data among the remaining) and low response
time, amount of service information, number of lost
data.

Conclusions and directions
of future investigation

In the paper proposed a solution to the actual
scientific problem of assessing the load of nodes of a
distributed system.

The proposed method is based on calculating the
processor, memory and channel bandwidth by streams
of different classes service.

Also introduced a complex value of the server load
imbalance, which takes into account processor, memory
and network bandwidth weights.

76

Ingpopmauiiini mexuonozii

Accordingly, this method allows you to calculate In future we are going to expand number of
the imbalance of all system servers, average operating distributed system involved nodes and modify this
time for various algorithms balancing and efficient use method according its physical characteristics.
of system resources.

REFERENCES

1. L. Kirichenko, I. Ivanisenko, T. Radivilova, Investigation of Self-similar Properties of Additive Data Traffic, CSIT-2015 X-
th International Scientific and Technical Conference «Computer science and information technologies», Lviv, UKRAINE,
14 — 17 September, 2015, pp. 169-172

2. 0. I. Sheluchin, S. M. Smolskiy, A. V. Osin, Self-Similar Processes in Telecommunications, New York : John Wiley & Sons,
2007, pp. 320.

3. MHUrnarenko E.N., beccapa6 B.U., [lerrapenko 1.B. AnantuBHEI alroput™ MOHUTOPUHTA 3arPY>KEHHOCTH CETH KJIacTepa B
cucreme OanancupoBku Harpy3ku. // Haykosi npami JorHTY. — Bun. 21(183). — 2011. — C. 95-102.

4. Chen H., Wang F., Helian N., Akanmu G. User-priority guided min-min scheduling algo-rithm for load balancing in cloud
computing // National Conference on Parallel Computing Tech-nologies (PARCOMPTECH). — Bangalore, 2013. — P. 1-8.

5. Cardellini V. A performance study of distributed architectures for the quality of web ser-vices. // Proceedings of the 34th
Conference on System Sciences. — Vol. 10. — 2001. — P.213-217.

6. Keshav S. An Engineering Approach to Computer Networking // Addison-Wesley, Read-ing, MA. — 1997. — P. 215-217.

7. LiuJ., Luo X., Zhang X., Zhang F., Li B. Job Scheduling Model for Cloud Computing Based on Multi-Objective Genetic
Algorithm // JCSI International Journal of Computer Science. — V.10(1). - Ne 3. - 2013. — P.134-139.

8. Kameda H., Li L., Kim C., Zhang Y. Optimal Load Balancing in Distributed Computer Sys-tems. — London: Springer,
Verlag London Limited. - 1997. — 238 p.

9. Kaur R., Luthra P. Load Balancing in Cloud Computing // Proc. of Int. Conf. on Recent Trends in Information,
Telecommunication and Computing. — Association of Computer Electronics and Electrical Engineers. — 2014. — P. 374-381.

10. Sviridov, A., Kovalenko, A. and Kuchuk, H. (2018), “The pass-through capacity redevelopment method of net critical
section based on improvement ON/OFF models of traffic”, Advanced Information Systems, Vol. 2, No. 2, pp. 139-144, DOI:
https://doi.org/10.20998/2522-9052.2018.2.24

11. Kovalenko, A.A. and Kuchuk, G.A. (2018), “The current state and trends of the development of computer systems of objects
of critical application”, Systems of control, navigation and communication, PNTU, Poltava, No. 1 (47), pp. 110-113,
DOI : https://doi.org/10.26906/SUNZ.2018.1.110

12. Donets V., Kuchuk N., Shmatkov S. Development of software of e-learning information system synthesis modeling process.
CyuacHi ingpopmayitini cucmemu. 2018. T. 2, Ne 2. C. 117-121. DOI: https://doi.org/10.20998/2522-9052.2018.2.20

13. Zykov, I.S., Kuchuk, N.H. and Shmatkov S.I. (2018), “Synthesis of architecture of the computer transaction management
system e-learning”, Advanced Information Systems, Vol. 2, No. 3, pp. 60-66, DOI: https://doi.org/10.20998/2522-
9052.2018.3.10

14. Ruban, L.V., Martovytskyi, V.O., Kovalenko, A.A. and Lukova-Chuiko, N.V. (2019), “Identification in Informative Systems
on the Basis of Users' Behaviour”, Proceedings of the International Conference on Advanced Optoelectronics and Lasers,
CAOL 2019-September,9019446, pp. 574-577, DOI: https://doi.org/10.1109/CAOL46282.2019.9019446

15. Kovalenko, A. and Kuchuk H. (2018), “Methods for synthesis of informational and technical structures of critical
application object’s control system”, Advanced Information Systems, 2018, Vol.2, No.1, pp. 22-27, DOI:
https://doi.org/10.20998/2522-9052.2018.1.04

16. Roth G. Server load balancing architectures, Part 1: Transport-level load balancing. — 2008. — Pexum mocryma:
http://www.javaworld.com/article/2077921/architecture-scalability/server-load-balancing-architectures--part-1--transport-
level-load-balancing.html.

Received (Hanuitinia) 06.04.2021
Accepted for publication (ITpuitasita no apyky) 26.05.2020

JunamivyHMii MeTOX OLIHKYU 32aBAHTAKEHHS BY3J1iB PO3IOIiJIEHOI CHCTEMH
1. M. IBaHiceHko

Anortanisi. IIpexMeToM IOCHI/UKEHHS € METOA OLIHKH PECypCiB PO3MOICHOI CHUCTEMH SIK YacTHHA HAYKOBOI
mpo0bJieMu, MOB’s3aHOI 3 OalaHCYBaHHSM HAaBAHTAKCHHS Ta e()eKTUBHUM BHUKOPUCTAHHSIM PECYPCiB PO3MOMAiIEHOI cucreMu. Y
CTaTTi OpPEICTaBICHUI METO/ OLIIHKH PECYPCIB PO3IOIIICHOI CHCTEMH, TAKKX SIK MEPEIKEBI BY3IIH, IPOLIECOP, MaM'sTh Ta IIUPHHA
CMYTH. 3ampoOHOBAaHHI METO IO3BOJISIE PO3PaxyBaTH HABAHTAXEHHS KOXKHOTO BY3ja OKPEMO B PO3MOALICHIH cucTeMi Ta y
Beiit cucremi B3arami. Kiacu moTokiB MOCHyr TakoX BpaxOBYIOThCS HPH PO3pPaxyHKY HaBaHTa)KSHHs 1MX pecypciB. Bemeno
KOMIUICKCHE 3HAueHHs AucOanaHCy cepBepa HAaBaHTAXKEHHs, SIKE BPaxoBYe Koe(illi€HTH Bard Ui Mpolecopa, mam'sTi Ta
mporyckHol 3matHocti Mepexi. Lli BaroBi koeQilli€eHTH MO3BONSIOTH BUOPaTH BaXIIUBICTh KOXXHOTO MEPEKEBOIO Pecypcy
(mporecopa, maM'siTi Ta MPOMYCKHOI 3aTHOCTI) TOPIBHAHO MiX c000r0. Takok 1eii MEeTOA J03BOJISIE PO3PaXyBaTH qucOanaHC
CHCTEMHHX CepBepiB. 3aCTOCYBAaHHs METONY B OaTaHCYBaHHI HABAHTAXKEHHS TO3BOJSIE POMOMIIATH 3aIIMTHU IO CEPBEPaX TaKUM
YMHOM, 100 BiIXWJIEHHS CepBepiB HABAHTaXKCHHS BiJ CEepeHbOrO 3HAYEHHS OYJI0 MiHIMAIbHUM, LIO JO03BOJSIE 3a0e3MeUnTH
OLIBII BUCOKI TTapaMeTpy MPOAYKTUBHOCTI cucteMu (epeKTHBHICTh BUKOPHUCTAHHS) Ta MIBUALINN 00poOKa MOTOKIB. BUCHOBKH.
VY poboTi MPOMOHYEThCST BUPIIIEHHST aKTyalbHOI HAYKOBOI MPOOJIEMHU OLIHKH HABAHTAKEHHS BY3JIB PO3MOAITICHOI CHCTEMH.
3amporoHOBaHMI METO 3aCHOBaHWi Ha OOYHCICHHI HABaHTAKEHHs MPOLECOpa, HABAHTAKCHHS MaM'ATi Ta MPOITYCKHOI
3MATHOCTI KaHATy 3a TOTOKAMH PIi3HHX KIaciB oOCiIyroByBaHHs. Takox Oyl1o BBEICHO KOMIUIEKCHE 3HAYCHHs IucOanaHcy
HABaHTAXXEHHsI CepBepa 3 ypaXyBaHHSAM BarW Mpolecopa, mam'sTi Ta MpOMyCKHOI 3JaTHOCTI Mepexi. BidmosiaHo, neir meronq
JIO3BOJISIE pO3paxyBaTH AWCOANAHC YCiX CepBepiB B CHCTEMi, CepelHiii Yac pobOTH pi3HHUX aJrOPUTMIB OalaHCYBaHHS Ta
e(eKTUBHICTh BUKOPHCTAHHSI CHCTEMHHUX PECypCiB.

KiawuoBi ciioBa: OanancyBaHHs HaBaHTa)KEHHs, PO3MOJiIeHa cUCTeMa, MyTbTH(PAKTaIbHUI Tpadik, BUKOPUCTAHHS
pecypciB, camonoaiOHui NOTiK, arcOaIanc.

77

https://doi.org/10.20998/2522-9052.2018.2.24
https://doi.org/10.26906/SUNZ.2018.1.110
https://doi.org/10.20998/2522-9052.2018.2.20
https://doi.org/10.20998/2522-9052.2018.3.10
https://doi.org/10.20998/2522-9052.2018.3.10
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004018101&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57196940070&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=56423229200&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57188763373&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85077570317&origin=resultslist&sort=plf-f&src=s&sid=72548ef39ed8a981a0259c9b9e7fb8f2&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2856423229200%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85077570317&origin=resultslist&sort=plf-f&src=s&sid=72548ef39ed8a981a0259c9b9e7fb8f2&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2856423229200%29&relpos=1&citeCnt=1&searchTerm=
https://doi.org/10
https://doi.org/10.1109/CAOL46282.2019.9019446

