
Системи управління, навігації та зв'язку, 2021, випуск 2(64) ISSN 2073-7394

70

UDC 004.056.55 doi: 10.26906/SUNZ.2021.2.070

Zhang Liqiang1, Cao Weiling1, Viacheslav Davydov2, Veronika Brechko2

1 Neijiang Normal University, Neijiang, China
2 National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

ANALYSIS AND COMPARATIVE RESEARCH OF THE MAIN APPROACHES

TO THE MATHEMATICAL FORMALIZATION

OF THE PENETRATION TESTING PROCESS

Abstract. In dynamic models, threats (vulnerabilities) can be viewed as a flow of temporary events. If the intervals of real-

ized cyber threats are recorded, then a continuous log-list of events related to software security can be formed. In some cases
and models, only the number of realized cyber threats for an arbitrary time interval can be recorded. In this case, the software
response to threats can be represented only at discrete points. In static models, the implementation of cyber threats is not relat-
ed to time, but the dependence of the number of errors or the number of implemented test cases (models by error area) on the
characteristics of the input data (models by data area) is taken into account. The article analyzes the methods of mathematical
formalization of the software penetration testing process. This software testing method is one of many approaches to testing the
security of computer systems. The article substantiates the importance of the processes of preliminary prototyping and mathemati-
cal formalization. The classification is carried out and the advantages and disadvantages of the main approaches of mathematical

modeling are highlighted. The list and main characteristics of dynamic and static models are presented. One of the negative
factors of formalization is indicated - the neglect of the factors of a priori uncertainty in the safety parameters in static models.

Keywords : information security; vulnerable software; security testing; penetration.

Introduction

A mathematical model constructing process – a

formalized description of a complex of factors that sig-

nificantly affect the state and/or functioning of the ob-

ject under research, and corresponding to this descrip-

tion of information support - is usually called mathemat-

ical modeling. The practical usefulness of mathematical

modeling lies in the possibility of obtaining information
about the qualitative properties and quantitative charac-

teristics of the object under research without conducting

(often complex or expensive) experiments in nature,

which may justify the costs of overcoming difficulties

arising in the development process or when trying to use

mathematical models.

The main difficulty that one has to face in mathe-

matical modeling is to ensure the adequacy of this mod-

el to the object under research. The user needs to find

out how accurately this model reflects the real situation

and how reliable quantitative estimates can be obtained
in the process of working with this model. The experi-

ence of mathematical modeling of information process-

es, accumulated over the past few decades, shows that

the problem of adequacy in a number of cases can be

successfully solved. An example of this is the systems

of computer simulation of numerous software and

hardware components of computing facilities.

However, on the other hand, attempts to apply

mathematical modeling methods to research such a com-

plex and important process as the process of ensuring

safety, convincingly demonstrate that, despite the natural
desire to take into account in the model all the factors that

significantly affect the functioning of the object under

research, it is extremely difficult to achieve this.

In cases where the construction of a mathematical

model that takes into account with an acceptable degree

of accuracy all factors that are essential for the object

under research is impossible, one has to abandon the

standard methodology for using the model and try to act

in other ways based on changing the formulations of the

problems being solved and involving the user in the

process of finding solutions.

In this situation, it is very important to make a rea-

soned choice of methods of mathematical formalization

of the processes of ensuring the security of computer

systems in general and software in particular.

The purpose of this article is to analyze and com-

paratively research the main approaches to the mathemat-

ical formalization of one of the software security testing

methods, the software penetration testing process.

Literature analysis [1-10] has shown that currently
there are many approaches to the mathematical formali-

zation of the software penetration testing process. They

are based on the well-known theories of computer engi-

neering [8], queuing [4], neural networks [1], fuzzy log-

ic [3], graph models and combinatorial calculation

methods [9], etc. In addition, the means for solving op-

timization problems formalized on the basis of these

models have been developed. These are, first of all, ana-

lytical methods, methods of mathematical program-

ming, heuristic methods, etc. [10]. Let us analyze the

approaches of mathematical modeling most often used
in practice, which are adapted to varying degrees to

modern requirements in the formalization of software

security testing processes.

One of the software development leaders is Mi-

crosoft. In this situation, it is natural to start the review

with an analysis of the modeling approaches offered by

this company. In [6], the authors considered the Mi-

crosoft Spec Explorer tools. This system is based on the

control of post and preconditions, described in special

languages as an addition to the program code. The pro-

posed approach is difficult to master, but powerful

enough in capable hands, and is intended mainly for aca-
demic purposes use or by testing specialists at the level of

the development and research department with sufficient

knowledge of mathematical formalization methods. An-

other way of classifying software assessment of method-

© Zhang Liqiang, Cao Weiling, Davidov V. V., Brechko V.O., 2021

Інформаційні технології

71

ologies is presented in the works [5]. In these works, it is

proposed to divide a number of approaches of mathemat-

ical formalization into the following testing groups: dy-

namic (allowing to assess the indicators of software tech-

nological security), static (allowing to obtain estimates of

indicators of completeness and complexity of testing)

models. At the same time, adapting the presented materi-

als to the topic of software security testing, the following

can be noted. In dynamic models, threats (vulnerabilities)
can be viewed as a flow of temporary events. If the inter-

vals of realized cyber threats are recorded, then a contin-

uous log-list of events related to software security can be

formed. In some cases and models, only the number of

realized cyber threats for an arbitrary time interval can be

recorded. In this case, the software response to threats can

be represented only at discrete points. In static models,

the implementation of cyber threats is not related to time,

but the dependence of the number of errors or the number

of implemented test cases (models by error area) on the

characteristics of the input data (models by data area) is

taken into account.

The list and main characteristics of dynamic and

static models are presented in table 1 (1 – Markov expo-

nential models: JM-model, Xui-model, Shanthikumar-

model, Bucchianico-model; 2 – Semi-Markov models:

SW-model, Hyperbolic model, Sukert-model; 3 – Heter-
ogeneous Markov NHPP models (Duane model, Gom-

pertz model, Goel-Okumoto model, Schneidewind mod-

el, Weibull model, Yamada exponential model, S-shaped

Rayleigh model, Pareto model, Xie-logarithmic model,

parabolic model, structural Nelson model, etc.; 4 – Soft-

ware complexity models: metric Halstead error model,

multivariate complexity model; 5 – Software testing

completeness models: Mills model, Lipov model).

Table 1 – List and main characteristics of dynamic and static models

No. Short description Mathematical formalization technologies background Advantages, disadvantages

1 2 3 4

Dynamic

1

Based on the assumptions that
during software testing, the
duration of time intervals be-
tween the detection of two er-
rors has an exponential distri-
bution with a failure rate pro-
portional to the number of un-
detected errors.

The distribution density function of the i-th error detec-

tion time, counted from the moment of detection of the

(i – 1) - th error, has the form:   i it
i ip t e


  , where –

i is the intensity of errors, which is proportional to the

number of not yet detected errors in the program (varies
depending on the type of model)

Advantages: ease of finding the
main characteristics.
Disadvantages: large increase in
computations due to the input-
ting of states durations changing;
the need to evaluate a large
number of new parameters asso-
ciated with each state.

2

Based on the Rayleigh model of
software reliability growth. It is
assumed that the error rate is
proportional not only to the
number of undetected software

errors, but also to the debug-
ging time interval:

Security error rate   1i iN i t     , where N is the

number of errors originally present in the program;  –

the proportionality factor, interpreted as the intensity of
the error detection, ti – the interval between (i-1) -th and
i-th security errors. Rayleigh distribution with the fol-
lowing density function:

       
2 2

1
1

tiN i
i ip t N i t e

  
    

Advantages: accuracy of simula-
tion results. Disadvantages: the
complexity of building a model
of semi-Markov processes. Lack
of a unified approach to the use

of distribution laws when de-
scribing individual transient
processes.

3

The model assumes that the
number of errors that appear
per unit of time are independent
random variables distributed
according to Poisson's law with
a flow rate proportional to the

expected number of errors re-
maining in the program at a
given time. In contrast to JM –
and SW – like convex models,
here an additional assumption
is made about the S – shaped
dependence of the errors num-
ber on the testing time.

The error number function is given by the following

formula:     1 1 gtm t a gt e  

where a is a coefficient that characterizes the number of

expected software errors, g – error detection intensity

factor. Accordingly, the intensity of the error is deter-

mined as follows:   2 gtt ag te 

Advantages: Accuracy of simu-
lation results. A simplicity in
finding a formula for the proba-
bilities that a certain number of
security errors will be detected
and localized (or not) in a given

time. Disadvantages: A large
increase in the complexity of the
model structure with small
changes in the input conditions.
The complexity of the mathe-
matical representation of distri-
bution laws in the description of
individual transient processes.

Static

4

The complexity of the program

is proposed to consider as a set
of intellectual efforts (solving
elementary problems by a per-
son before an error occurs)
when coding a text in a certain
programming language.

Difficulty is estimated as

   2 1 1 2 2log log 2E N L N N     

where 1 2 1 2 2 2log logN     – theoretical program

length, 1 2   – the number of unique operators

and operands of the programming language, 2

1 2

2
L

N





)

– quality of programming, 1 2N N N  – the number

of calls to operators and operands in the software.

Advantages: Software security

assessment based on the results
of software complexity assess-
ment. Disadvantages: The pres-
ence of subjective assessment
factors, the possibility of obtain-
ing the effect of the "curse of
dimension" with a large number
of factors or a non-linear form of

the approximating polynomial.

Системи управління, навігації та зв'язку, 2021, випуск 2(64) ISSN 2073-7394

72

End of Table 1

1 2 3 4

5

Models for assessing the com-
pleteness of software testing are
based on methods of independ-
ent introduction and detection
of test errors and methods of
conducting independent exami-
nations. Errors are introduced

randomly and recorded in the
man-made error log.

The reliability of the statement that there are k errors in
the program is as follows:

 
 

1,
,

1 ,

if n k
R k S

S S k if n k


 

  

where S – number of errors introduced, k – number of

real errors found.

Advantages: Software security
assessment based on the results
of software completeness as-
sessment. Disadvantages: A
simplified look at the error de-
tection process using a different
number of tests. Neglecting fac-

tors of a priori uncertainty in
software security parameters.

Among the intelligent approaches of the mathe-

matical formalization of processes associated with the

software life cycle, the direction based on neural net-

works is worth mentioning [1]. This is connected with
specifics of the functioning of computer systems, which

are human-machine systems.

Neural networks are an alternative to the statistical

analysis components of anomaly detection systems.

Neural networks make it possible to identify common

test indicators, identify statistically significant devia-

tions from the requirements for software quality and

security. They are applicable as a statistical error detec-

tion system because of their self-learning ability. More-

over, a neural network can be configured so that it will

further train on its own, constantly reacting to the

slightest changes in the software. Neural networks re-
quire less intervention from penetration testers.

The studies carried out showed that at present,

when modeling, software is presented in the form of a

recurrent system that solves a number of specific tasks.

In this case, the energy function acts as a system quality

indicator:

1

2
ij i j

i j i

E w x x



   ,

where ijw is a weight coefficient between the i-th and j-

th neurons; i jx и x are X vector components (input data

of the system),

and an expression of the form is used as a criterion

for solving the problem of access distribution and data

protection in a computer network:

() ()

1 1, 1 1

1
min()

2

p pN i N kN N
j

ij k ki
i k k i j

E P P x x

    

      ,

where ijP is j-th resource between source and destina-

tion; ij kP P – the number of nodes on a computer

network which share routes ijP , and kP ;
j

ix =1 , if

chosen ijP , and
j

ix =0 otherwise; ()pN i – number of

access directions variants defined between the source

and the destination.

Analysis of works in the field of data protection [1,

3, 8, 10] showed that this direction of modeling has a

number of advantages associated with taking into ac-

count the specifics of external influences and the possi-

bility of self-learning.

However, the studies of the software testing pro-

cess models, presented in the form of neural networks

[1], along with their advantages, have also shown disad-

vantages associated with the inevitable time spent on the
learning process when building a model and, as a con-

sequence, "conservatism" in relation to dynamic chang-

es in the process of managing the system software de-

velopment. Therefore, it is advisable to use these mod-

els when modeling individual components or structural

elements of intelligent decision-making systems or to

use them as the basis for the process of developing prac-

tical recommendations for managers.

Studies of models based on the apparatus of con-

trolled random processes made it possible to determine

two specific areas of software testing implemented by

this approach: software technological security and de-
bugging models which allow assessing the indicators of

software technological security depending on runs on

specified input data areas and subsequent software mod-

ifications. [2].

Among the advantages of this modeling approach,

one should highlight the possibility of its implementa-

tion in the form of a link monitor and an audit system.

In addition, in complex, multifactorial systems, the use

of this modeling approach makes it possible to analyze

individual components without the danger of reducing

the accuracy of the modeling results as a whole.
At the same time, mathematical models of the

software development process, taking into account the

peculiarities of the modern SCRUM methodology and

the factors of increasing security requirements, need a

number of improvements.

In the automaton control model, the software pene-

tration testing technology is represented as a deterministic

automaton, the input of which receives a sequence of user

commands. The main elements of the automaton model

are: a set of system states  V , many users  U , multi-

ple access matrices  M , many user commands chang-

ing the access matrix  CC , many user commands

changing state  VC , set of output values  Out .

Among the advantages of this modeling approach,

the variety of testing approaches should be mentioned.

They determine not only the rules for the distribution of

tasks, but also the configuration, the order of interaction

between objects and subjects of the software security

testing process.
Among the disadvantages of automatic models, we

note the complexity of their practical implementation in

Інформаційні технології

73

the case of taking into account the whole variety of

stages, methods and tools for software security testing.

In addition, the problem how this direction of modeling

should take into consideration the security factor is also

not solved. Thus, as a result of the analysis and compar-

ative studies of the existing approaches to the mathe-

matical formalization of the software penetration testing

process, a number of characteristic features, advantages

and disadvantages of the existing areas of analysis and
synthesis of these processes were identified.

The research of the main modeling approaches

showed that in most models associated with the imple-

mentation of software security testing technology (espe-

cially dynamic models) there is no unified approach to

the use of distribution laws when describing individual

transient processes.

Moreover, the neglect of the factors of a priori un-

certainty in the security parameters in static models is

also a common negative factor for formalization. In

addition, the lack of consideration in models of dynamic

changes during software development (SCRUM fea-

tures) requires appropriate research and development.

Conclusions

The main directions and approaches of mathemati-

cal modeling are analyzed, promising directions of

mathematical formalization of software security testing

processes are highlighted.

The expediency of improving the existing methods

of software penetration testing by synthesizing a new

software testing method taking into account increased
security requirements is indicated.

REFERENCES

1. Adetunji Adebiyi A Neural Network Based Security Tool for Analyzing Software // Adetunji Adebiyi, Johnnes Arreymbi,
Chris Imafidon / Technological Innovation for the Internet of Things 4th IFIP WG 5.5/SOCOLNET Doctoral Conference on
Computing, Electrical and Industrial Systems, DoCEIS 2013, Costa de Caparica, Portugal, April 15-17, 2013. Proceedings

2. Daniel Dalalana Bertoglio Overview and open issues on penetration test // Daniel Dalalana Bertoglio, Avelino Francisco
Zorzo / Journal of the Brazilian Computer Society (2017) 23:2 DOI 10.1186/s13173-017-0051-1

3. Kostadinov Dimitar Introduction: Intelligence Gathering & Its Relationship to the Penetration Testing Process [Electronic
resource]. URL: https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering

4. Mukhin, V., Kuchuk, N., Kosenko, N., Kuchuk, H. and Kosenko, V. Decomposition Method for Synthesizing the Computer
System Architecture , Advances in Intelligent Systems and Computing, AISC, vol. 938, pp 289-300,
DOI: https://doi.org/10.1007/978-3-030-16621-2_27

5. Markov A.S. Models for evaluating and planning software tests for safety requirements information // Bulletin of MSTU
im. N.E. Bauman. Ser. "Instrument Engineering", 2011. Special issue "Technical means and systems of information protec-
tion ". S. 90-103.

6. Model-based Testing with SpecExplorer [Electronic resource]. URL:https://www.microsoft.com/en-
us/research/project/model-based-testing-with-specexplorer/

7. Nickerson С. and other. The Penetration Testing Execution Standard / Chris Nickerson, Dave Kennedy,Chris John Riley,
Eric Smith, Iftach Ian Amit, Andrew Rabie, Stefan Friedli, Justin Searle, BrandonKnight, Chris Gates, Joe McCray, Carlos
Perez,John Strand, Steve Tornio, Nick Percoco, DaveShackelford, Val Smith, Robin Wood, Wim Remes,Rick Hayes.
30.04.2012 [Electronic resource]. URL: http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines

8. Sanchez, M.A. Computer Science and Engineering—Theory and Applications / Sanchez, M.A., Aguilar, L., Castañón-Puga,
M., Rodríguez Díaz, A. 2018. – 101 р.

9. Semenov, S., Sira, O., Kuchuk, N. Development of graphicanalytical models for the software security testing algorithm /
Eastern-European Journal of Enterprise Technologies, Vol 2, No 4 (92), pp. 39-46, DOI: https://doi.org/10.15587/1729-
4061.2018.127210

10. Study A Penetration Testing Model / Germany, Bonn. 111 р. [Electronic resource]. – URL:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publ
icationFile

Received (Надійшла) 21.01.2021

Accepted for publication (Прийнята до друку) 07.04.2021

Аналіз і порівняльне дослідження основних підходів

математичної формалізації процесу тестування на проникнення

Zhang Liqiang, Cao Weiling, В. В. Давидов, В. О. Бречко

Анотація . У динамічних моделях загрози (уразливості) Software можна розглядати як потік тимчасових подій.
Якщо фіксуються інтервали реалізованих кіберзагроз, то може сформуватися безперервний log-лист подій, відно-
сящіхся до безпеки Software. У ряді випадків і моделей може фіксуватися тільки число реалізованих кібе-ругроз за дові-
льний інтервал часу. У цьому випадку реакція Software на загрози може бути представлена тільки в дискретних точках.

У статичних моделях реалізацію кіберзагроз не пов'язують з часом, при цьому враховують зави-ності кількості помилок
або число реалізованих тест-кейсів (моделі по області помилок) від характеристики вхідних даних (моделі по області
даних).У статті проаналізовано методи математичної формалізації процесу тестування на проникнення програмного
забезпечення. Цей метод тестування програмного забезпечення є одним із багатьох підходів до перевірки безпеки
комп’ютерних систем. У статті обґрунтовано важливість процесів попереднього прототипування та математичної фор-
малізації. Проведено класифікацію та висвітлено переваги та недоліки основних підходів математичного моделювання.
Представлено перелік та основні характеристики динамічних та статичних моделей. Вказується один із негативних фак-
торів формалізації - нехтування факторами апріорної невизначеності параметрів безпеки в статичних моделях.

Ключові слова: інформаційна безпека; вразливе програмне забезпечення; тестування безпеки, проникнення.

https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering
https://doi.org/10.1007/978-3-030-16621-2_27
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
../../../../../../Semenov/Downloads/Vol%202,%20No%204%20(92)
https://doi.org/10.15587/1729-4061.2018.127210
https://doi.org/10.15587/1729-4061.2018.127210
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile

