Cucmemu ynpaesiinns, nagizauii ma 36'a3xy, 2021, eunyck 2(64)

ISSN 2073-7394

UDC 004.056.55

doi: 10.26906/SUNZ.2021.2.070

Zhang Ligiang®, Cao Weiling', Viacheslav Davydov?, Veronika Brechko?

! Neijiang Normal University, Neijiang, China
ZNational Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

ANALYSIS AND COMPARATIVE RESEARCH OF THE MAIN APPROACHES
TO THE MATHEMATICAL FORMALIZATION
OF THE PENETRATION TESTING PROCESS

Abstract. In dynamic models, threats (vulnerabilities) can be viewed as a flow of temporary events. If the intervals of real-
ized cyber threats are recorded, then a continuous log-list of events related to software security can be formed. In some cases
and models, only the number of realized cyber threats for an arbitrary time interval can be recorded. In this case, the software
response to threats can be represented only at discrete points. In static models, the implementation of cyber threats is not relat-
ed to time, but the dependence of the number of errors or the number of implemented test cases (models by error area) on the
characteristics of the input data (models by data area) is taken into account. The article analyzes the methods of mathematical
formalization of the software penetration testing process. This software testing method is one of many approaches to testing the
security of computer systems. The article substantiates the importance of the processes of preliminary prototyping and mathemati-
cal formalization. The classification is carried out and the advantages and disadvantages of the main approaches of mathematical
modeling are highlighted. The list and main characteristics of dynamic and static models are presented. One of the negative

factors of formalization is indicated - the neglect of the factors of a priori uncertainty in the safety parameters in static models.
Keywords: information security; vulnerable software; security testing; penetration.

Introduction

A mathematical model constructing process — a
formalized description of a complex of factors that sig-
nificantly affect the state and/or functioning of the ob-
ject under research, and corresponding to this descrip-
tion of information support - is usually called mathemat-
ical modeling. The practical usefulness of mathematical
modeling lies in the possibility of obtaining information
about the qualitative properties and quantitative charac-
teristics of the object under research without conducting
(often complex or expensive) experiments in nature,
which may justify the costs of overcoming difficulties
arising in the development process or when trying to use
mathematical models.

The main difficulty that one has to face in mathe-
matical modeling is to ensure the adequacy of this mod-
el to the object under research. The user needs to find
out how accurately this model reflects the real situation
and how reliable quantitative estimates can be obtained
in the process of working with this model. The experi-
ence of mathematical modeling of information process-
es, accumulated over the past few decades, shows that
the problem of adequacy in a number of cases can be
successfully solved. An example of this is the systems
of computer simulation of numerous software and
hardware components of computing facilities.

However, on the other hand, attempts to apply
mathematical modeling methods to research such a com-
plex and important process as the process of ensuring
safety, convincingly demonstrate that, despite the natural
desire to take into account in the model all the factors that
significantly affect the functioning of the object under
research, it is extremely difficult to achieve this.

In cases where the construction of a mathematical
model that takes into account with an acceptable degree
of accuracy all factors that are essential for the object
under research is impossible, one has to abandon the
standard methodology for using the model and try to act

in other ways based on changing the formulations of the
problems being solved and involving the user in the
process of finding solutions.

In this situation, it is very important to make a rea-
soned choice of methods of mathematical formalization
of the processes of ensuring the security of computer
systems in general and software in particular.

The purpose of this article is to analyze and com-
paratively research the main approaches to the mathemat-
ical formalization of one of the software security testing
methods, the software penetration testing process.

Literature analysis [1-10] has shown that currently
there are many approaches to the mathematical formali-
zation of the software penetration testing process. They
are based on the well-known theories of computer engi-
neering [8], queuing [4], neural networks [1], fuzzy log-
ic [3], graph models and combinatorial calculation
methods [9], etc. In addition, the means for solving op-
timization problems formalized on the basis of these
models have been developed. These are, first of all, ana-
Iytical methods, methods of mathematical program-
ming, heuristic methods, etc. [10]. Let us analyze the
approaches of mathematical modeling most often used
in practice, which are adapted to varying degrees to
modern requirements in the formalization of software
security testing processes.

One of the software development leaders is Mi-
crosoft. In this situation, it is natural to start the review
with an analysis of the modeling approaches offered by
this company. In [6], the authors considered the Mi-
crosoft Spec Explorer tools. This system is based on the
control of post and preconditions, described in special
languages as an addition to the program code. The pro-
posed approach is difficult to master, but powerful
enough in capable hands, and is intended mainly for aca-
demic purposes use or by testing specialists at the level of
the development and research department with sufficient
knowledge of mathematical formalization methods. An-
other way of classifying software assessment of method-

70 © Zhang Ligiang, Cao Weiling, Davidov V. V., Brechko V.O., 2021

Ingpopmauiiini mexuonozii

ologies is presented in the works [5]. In these works, it is
proposed to divide a number of approaches of mathemat-
ical formalization into the following testing groups: dy-
namic (allowing to assess the indicators of software tech-
nological security), static (allowing to obtain estimates of
indicators of completeness and complexity of testing)
models. At the same time, adapting the presented materi-
als to the topic of software security testing, the following
can be noted. In dynamic models, threats (vulnerabilities)
can be viewed as a flow of temporary events. If the inter-
vals of realized cyber threats are recorded, then a contin-
uous log-list of events related to software security can be
formed. In some cases and models, only the number of
realized cyber threats for an arbitrary time interval can be
recorded. In this case, the software response to threats can
be represented only at discrete points. In static models,
the implementation of cyber threats is not related to time,

but the dependence of the number of errors or the number
of implemented test cases (models by error area) on the
characteristics of the input data (models by data area) is
taken into account.

The list and main characteristics of dynamic and
static models are presented in table 1 (1 — Markov expo-
nential models: JM-model, Xui-model, Shanthikumar-
model, Bucchianico-model; 2 — Semi-Markov models:
SW-model, Hyperbolic model, Sukert-model; 3 — Heter-
ogeneous Markov NHPP models (Duane model, Gom-
pertz model, Goel-Okumoto model, Schneidewind mod-
el, Weibull model, Yamada exponential model, S-shaped
Rayleigh model, Pareto model, Xie-logarithmic model,
parabolic model, structural Nelson model, etc.; 4 — Soft-
ware complexity models: metric Halstead error model,
multivariate complexity model; 5 — Software testing
completeness models: Mills model, Lipov model).

Table 1 — List and main characteristics of dynamic and static models

No. Short description Mathematical formalization technologies background| Advantages, disadvantages
1 2 3 4
Dynamic
c?jfﬁ% Ozoglfvaarzsurtgg;ggs ttr;?; The distribution density function of the i-th error detec- Qg}lr?r;tha;rii:tei?:;cgf finding the
duration of time intervals be- t!on time, counted from the moment of digftmn of the Disadvantages: large increase in
| |tween the detection of two er- (i—1) - th error, has the form: p(t;)=%;e™™"" , where —|computations due to the input-
rors has an expc_)nentlal distri- A; is the intensity of errors, which is proportional to the ting of states durations changing;
bution with a failure rate pro- ber of not vet detected in th . |the need to evaluate a large
portional to the number of un- gum i{. orno t%/e ¢ N ecfe %rr?rs in the program (varies number of new parameters asso-
detected errors. epending on the type of model) ciated with each state.
Based on the Rayleigh model of|secyrity error rate 2; = <|>(N (i _1))ti , where N is the|Advantages: accuracy of simula-
software reliability growth. It is o ; . tion results. Disadvantages: the
assumed that the error rate js{number of errors orlgmally present in the program;, ¢ —|complexity of building a model
proportional not only to the|the proportionality factor, interpreted as the intensity of|of semi-Markov processes. Lack
2 |number of undetected software Fhe error o_letectlon, ti— the_lnter_/al _betv_veen (_I-l) -th and|of a unified approach to the use
errors, but also to the debug-|i-th security errors. Rayleigh distribution with the fol-|of distribution laws when de-
ging time interval: lowing density function: scribing individual transient
e processes.
: ~¢(N—(i-1))i
p(ti)=0o(N—-(i-1))xte #(N-(i-1)
The model assumes that the The error number function is given by the followin Advantages: Accuracy of simu-
number of errors that appear g y 9 jation results. A simplicity in
per unit of time are independent|formula: m(t) = a(l—(1+ gt)e’gt) finding a formula for the proba-
random variables distributed bilities that a certain number of
according to Poisson's law with|where a is a coefficient that characterizes the number of|security errors will be detected
a flow rate proportional to the|expected software errors, g — error detection intensity a_nd Iocal_ized (or not) in a given
3 |expected number of errors re-igactor. Accordingly, the intensity of the error is deter-|time. Disadvantages: A large
maining in the program at a| . d as follows: 2 gt increase in the complexity of the
given time. In contrast to JM | Mined as follows: (t) = ag“te model structure with small
and SW — like convex models, changes in the input conditions.
here an additional assumption The complexity of the mathe-
is made about the S — shaped matical representation of distri-
dependence of the errors num- bution laws in the description of
ber on the testing time. individual transient processes.
Static
The complexity of the program|Difficulty is estimated as Advantages: Software security
is proposed to consider as a set E = Nlog, (/L) =Ny N log, /(215) assessment based on the results
of intellectual efforts (solving _) of software complexity assess-
elementary problems by a per-|\where N =y log, y +pplogyuy, — theoretical programiment. Disadvantages: The pres-
son before an error occurs)|jength, =y +, — the number of unique operators|ence of subjective assessment
4 |when coding a text in a certain 5 factors, the possibility of obtain-
programming language. and operands of the programming language, L _ Mo)|ing the_ effect' of the "curse of
N2 “|dimension" with a large number
— quality of programming, N =N;+N, — the number|Of factors or a non-linear form of
of calls to operators and operands in the software. the approximating polynomial.

71

Cucmemu ynpaesiinns, nagizauii ma 36'a3xy, 2021, eunyck 2(64)

ISSN 2073-7394

End of Table 1

1 2

3 4

pleteness of software testing are|the program is as follows:

based on methods of independ-

ent introduction and detection -
R(k,S)=

5 |of test errors and methods of S/(

conducting independent exami-

randomly and recorded in the|real errors found.
man-made error log.

S+k+1), if n<k

Models for assessing the com-|The reliability of the statement that there are k errors in|Advantages: Software security

assessment based on the results
of software completeness as-
sessment. Disadvantages: A
simplified look at the error de-
tection process using a different

1, ifn>k

nations. Errors are introduced|where S — number of errors introduced, k — number of|number of tests. Neglecting fac-

tors of a priori uncertainty in
software security parameters.

Among the intelligent approaches of the mathe-
matical formalization of processes associated with the
software life cycle, the direction based on neural net-
works is worth mentioning [1]. This is connected with
specifics of the functioning of computer systems, which
are human-machine systems.

Neural networks are an alternative to the statistical
analysis components of anomaly detection systems.
Neural networks make it possible to identify common
test indicators, identify statistically significant devia-
tions from the requirements for software quality and
security. They are applicable as a statistical error detec-
tion system because of their self-learning ability. More-
over, a neural network can be configured so that it will
further train on its own, constantly reacting to the
slightest changes in the software. Neural networks re-
quire less intervention from penetration testers.

The studies carried out showed that at present,
when modeling, software is presented in the form of a
recurrent system that solves a number of specific tasks.
In this case, the energy function acts as a system quality
indicator:

1
E =220 2 WiXixj
i
where wj; is a weight coefficient between the i-th and j-
th neurons; x; u x; are X vector components (input data

of the system),

and an expression of the form is used as a criterion
for solving the problem of access distribution and data
protection in a computer network:

1NN Np (i) Np (k) .
Eemin5Y X X X R,
i=lk=Lk=i j=1 (=1

where By is j-th resource between source and destina-
tion; |P,j mH“| — the number of nodes on a computer

=1, if

network which share routes R, and B, ; xij

chosen R, and xij =0 otherwise; N (i) — number of

access directions variants defined between the source
and the destination.

Analysis of works in the field of data protection [1,
3, 8, 10] showed that this direction of modeling has a
number of advantages associated with taking into ac-
count the specifics of external influences and the possi-
bility of self-learning.

However, the studies of the software testing pro-
cess models, presented in the form of neural networks
[1], along with their advantages, have also shown disad-
vantages associated with the inevitable time spent on the
learning process when building a model and, as a con-
sequence, "conservatism" in relation to dynamic chang-
es in the process of managing the system software de-
velopment. Therefore, it is advisable to use these mod-
els when modeling individual components or structural
elements of intelligent decision-making systems or to
use them as the basis for the process of developing prac-
tical recommendations for managers.

Studies of models based on the apparatus of con-
trolled random processes made it possible to determine
two specific areas of software testing implemented by
this approach: software technological security and de-
bugging models which allow assessing the indicators of
software technological security depending on runs on
specified input data areas and subsequent software mod-
ifications. [2].

Among the advantages of this modeling approach,
one should highlight the possibility of its implementa-
tion in the form of a link monitor and an audit system.
In addition, in complex, multifactorial systems, the use
of this modeling approach makes it possible to analyze
individual components without the danger of reducing
the accuracy of the modeling results as a whole.

At the same time, mathematical models of the
software development process, taking into account the
peculiarities of the modern SCRUM methodology and
the factors of increasing security requirements, need a
number of improvements.

In the automaton control model, the software pene-
tration testing technology is represented as a deterministic
automaton, the input of which receives a sequence of user
commands. The main elements of the automaton model

are: a set of system states {V} , many users {U} , multi-
ple access matrices {M} , many user commands chang-
ing the access matrix {CC} , many user commands

changing state {VC}, set of output values {Out} .

Among the advantages of this modeling approach,
the variety of testing approaches should be mentioned.
They determine not only the rules for the distribution of
tasks, but also the configuration, the order of interaction
between objects and subjects of the software security
testing process.

Among the disadvantages of automatic models, we
note the complexity of their practical implementation in

72

Ingpopmayiini mexnonozii

the case of taking into account the whole variety of
stages, methods and tools for software security testing.
In addition, the problem how this direction of modeling
should take into consideration the security factor is also
not solved. Thus, as a result of the analysis and compar-
ative studies of the existing approaches to the mathe-
matical formalization of the software penetration testing
process, a number of characteristic features, advantages
and disadvantages of the existing areas of analysis and
synthesis of these processes were identified.

The research of the main modeling approaches
showed that in most models associated with the imple-
mentation of software security testing technology (espe-
cially dynamic models) there is no unified approach to
the use of distribution laws when describing individual
transient processes.

Moreover, the neglect of the factors of a priori un-
certainty in the security parameters in static models is
also a common negative factor for formalization. In
addition, the lack of consideration in models of dynamic
changes during software development (SCRUM fea-
tures) requires appropriate research and development.

Conclusions

The main directions and approaches of mathemati-
cal modeling are analyzed, promising directions of
mathematical formalization of software security testing
processes are highlighted.

The expediency of improving the existing methods
of software penetration testing by synthesizing a new
software testing method taking into account increased
security requirements is indicated.

REFERENCES

1. Adetunji Adebiyi A Neural Network Based Security Tool for Analyzing Software // Adetunji Adebiyi, Johnnes Arreymbi,
Chris Imafidon / Technological Innovation for the Internet of Things 4th IFIP WG 5.5/SOCOLNET Doctoral Conference on
Computing, Electrical and Industrial Systems, DoCEIS 2013, Costa de Caparica, Portugal, April 15-17, 2013. Proceedings

2. Daniel Dalalana Bertoglio Overview and open issues on penetration test // Daniel Dalalana Bertoglio, Avelino Francisco
Zorzo / Journal of the Brazilian Computer Society (2017) 23:2 DOI 10.1186/s13173-017-0051-1

3. Kostadinov Dimitar Introduction: Intelligence Gathering & Its Relationship to the Penetration Testing Process [Electronic
resource]. URL: https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering

4. Mukhin, V., Kuchuk, N., Kosenko, N., Kuchuk, H. and Kosenko, V. Decomposition Method for Synthesizing the Computer
System Architecture, Advances in Intelligent Systems and Computing, AISC, wvol. 938, pp 289-300,
DOI: https://doi.org/10.1007/978-3-030-16621-2_27

5. Markov A.S. Models for evaluating and planning software tests for safety requirements information // Bulletin of MSTU
im. N.E. Bauman. Ser. "Instrument Engineering”, 2011. Special issue "Technical means and systems of information protec-
tion ". S. 90-103.

6. Model-based Testing with SpecExplorer [Electronic
us/research/project/model-based-testing-with-specexplorer/

7. Nickerson C. and other. The Penetration Testing Execution Standard / Chris Nickerson, Dave Kennedy,Chris John Riley,
Eric Smith, Iftach lan Amit, Andrew Rabie, Stefan Friedli, Justin Searle, BrandonKnight, Chris Gates, Joe McCray, Carlos
Perez,John Strand, Steve Tornio, Nick Percoco, DaveShackelford, Val Smith, Robin Wood, Wim Remes,Rick Hayes.
30.04.2012 [Electronic resource]. URL: http://www.pentest-standard.org/index.php/PTES_Technical _Guidelines

8. Sanchez, M.A. Computer Science and Engineering—Theory and Applications / Sanchez, M.A., Aguilar, L., Castaién-Puga,
M., Rodriguez Diaz, A. 2018. — 101 p.

9. Semenov, S, Sira, O., Kuchuk, N. Development of graphicanalytical models for the software security testing algorithm /
Eastern-European Journal of Enterprise Technologies, Vol 2, No 4 (92), pp. 39-46, DOI: https://doi.org/10.15587/1729-
4061.2018.127210

10. Study A Penetration Testing Model / Germany, Bonn. 111 p. [Electronic resource]. — URL:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf? blob=publ
icationFile

resource]. URL.:https://www.microsoft.com/en-

Received (Hamiina) 21.01.2021
Accepted for publication (ITpuitasita no apyky) 07.04.2021

AHaJni3 i nopiBHA/IbHE 10CJIiIKeHHs] OCHOBHUX IiAX01iB
MaTeMaTU4HOI (popMaizauii npouecy TeCTyBaHHS HA POHUKHEHHS

Zhang Ligiang, Cao Weiling, B. B. laBumos, B. O. Bpeuko

AHoTamis. Y IUHaAMIYHUX MOZENSX 3arpo3u (ypas3nuBocti) Software MOXKHA PO3IISIIATH SIK MMOTIK TUMYACOBHX MOJIH.
Skuo QikcyroThes iHTepBaiM peaji3oBaHUX Kibep3arpos, To Moxke copmyBarucs OesnepepBHUEl log-nmuct momiil, BigHO-
csrixces g0 6esneku Software. V psiai BUnaakis i Mozaeneid Moxxe (hikCyBaTHCS TiJIBKM YUCIO Peai30BaHUX Kibe-pyrpo3 3a AoBi-
NIBHUI iHTEpBaI Yacy. Y LbOMY BUNAAKy peakilis Software Ha 3arpo3u Moxke OYTH HpeCTaBiIeHa TUIbKH B JUCKPETHUX TOYKaX.
VY craTndHUX MOJENSIX peanizaliiio Kibep3arpo3 He MOB'SI3YIOTh 3 4aCOM, TIPH LOMY BPaXOBYIOTh 3aBHU-HOCTI KUJTBKOCTI TIOMUIIOK
ab0 4KCIO peanizoBaHHUX TecT-KeiciB (MOJemi Mo 00MacTi MOMUJIOK) BiJl XapaKTePHCTHKU BXiMTHHUX JaHUX (Mozelni mo obmacti
JNaHux).Y CTaTTi MpoaHali30BaHO METOAM MaTeMaTHYHOI (opMmaiizaiii mpolecy TeCTYBaHHS Ha MPOHUKHEHHS MpPOrPaMHOrO
3abe3neuenns. Lleit MeTos TecTyBaHHS MPOrpaMHOro 3abe3neyeHHs € OAHHM i3 0araThoX MiAXOMAIB IO MepeBipkHu Oe3mexu
KOMIT'FOTepHHUX CHUCTEM. Y CTaTTi OOIPYHTOBAHO BaXKJIMBICTh TPOIIECIB MOMEPEAHBOTO MPOTOTUITYBAHHS T4 MAaTEMaTHYHOI (op-
mauizaii. [IpoBeneHo kimacudikailito Ta BUCBITJICHO MepeBard Ta HeJOJMiKA OCHOBHHX Mi/IXO/iB MAaTeMAaTUYHOTO MOJCTIOBAHHS.
[penacraBieHo mepernik Ta OCHOBHI XapaKTePUCTUKH JHHAMIYHUX Ta CTATUYHHUX Mojenell. Bka3yeThCs OIMH i3 HeraTUBHUX (hak-
TopiB hopmManizailii - HeXTyBaHHs ()aKTOPaMH amnpiopHOT HEBU3HAYCHOCTI MapaMeTpPiB OE3MeKH B CTATHYHUX MOICIISX.

KawuoBi cioBa: indopmariiiina Gesrexa; Bpa3iuBe MporpamMHe 3a0e3eueHHsl; TeCTYBaHHs Oe3IeKH, TIPOHUKHEHHSI.

73

https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering
https://doi.org/10.1007/978-3-030-16621-2_27
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
../../../../../../Semenov/Downloads/Vol%202,%20No%204%20(92)
https://doi.org/10.15587/1729-4061.2018.127210
https://doi.org/10.15587/1729-4061.2018.127210
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile

