Ingpopmauiiini mexuonozii

UDC 004.942

K. Rukkas, G. Zholtkevych

doi: 10.26906/SUNZ.2020.2.095

V. N. Karazin Kharkiv National University, Kharkiv, Ukrania

LOAD BALANCING CONSISTENCY IN A DISTRIBUTED DATASTORE

Abstract. The subject of the article’s research is the CAP-guarantees of distributed datastore, particularly availability
and consistency. The goal is to design an approach that will become an instrument to balance consistency CAP-guarantee
for any business needs still maintaining appropriate availability guarantee. The algorithm could be integrated to datastore
infrastructure as one of distributed datastore components that must stand on top of or integrated in database middleware
standing on the path to node database instance and actual query execution. To achieve that, the following problems were
solved in the paper: the simulation models for approaches have been implemented, actual possibility to implement an algo-
rithm following specific approach has been investigated. The following methods were used to implement such solutions:
UML modeling, computer model implementing the simulation of the designed algorithms, carrying experiments on the im-
plemented models. Carried out experiments resulted in capability to estimate the complexity and possible performance and
make conclusions choosing one of optimal approaches to be designed further. As a conclusion, the optimal designed and
estimated approach of balancing consistency and availability is ready and it was the purpose of this paper. It could be ap-
plied as one of basic components on the design distributed datastores stage, so that balanced guarantees of distributed sys-

tem reliability could be achieved at the earlier stage of business needs implementation.

Keywords: CAP-guarantees, load balancing, distributed databases, high availability, strong consistency.

Introduction

In modern times scaling technical software re-
quires distributed systems it relies on to be resistant to
node faults occurrence, fast enough response time and
reasonable consistency reached on most of the distrib-
uted system nodes to avoid node conflicts. It is de-
sired, the system must survive having any number of
nodes in its infrastructure. In conditions of well-known
CAP-theorem such requirements become hard to
achieve. The current paper is devoted to the research
of how the CAP-characteristics could be balanced to
fulfill these needs. This could result in lots of opportu-
nities: reaching needed value of consistency, maintain-
ing reasonable value of availability, monitoring the
consistency and availability current state of the sys-
tem, and even achieving strict consistency in good
enough network conditions.

Literature analysis and background. While de-
signing any software architecture there is a need to
make a choice: ACID or BASE model, that means
strong consistency that results in weaker availability or
basically available eventually consistent system where
strong consistency is neglected. The comparing analysis
for these models were made in [1]. It is reasonable solu-
tion for some business requirements, when, for example,
the system has small number of nodes in its infrastruc-
ture, eventually consistency is achieved quickly and
strong consistency is not important in such case. Or
when database partitioning is settled and every dataunit
can be found only on one node and replication is not
needed. But for large distributed datastore with replica-
tion it is important somehow to achieve the best value of
consistency and not to deteriorate availability and parti-
tion tolerance guarantees. Also, it is essential to keep
track on these guarantees while system is working.
CAP-guarantees had been deeply researched since the
well-known CAP-theorem had been officially proven
[2] and discussed 12 years later [3]. Some work had
been done for consistency improvements that can tend
to strict consistency [4]. But in this paper, the through-

put is calculated only for number of nodes up to 16.
Large systems were not considered in this work.
Background. In this paper we explore load balanc-
ing solutions to investigate the ability to balance across
only consistent nodes that supports one or another
dataunit. We are convinced that strong consistency or
eventual consistency, that converges fast, could be
achieved without losing availability since most of dis-
tributed system use epidemic algorithms to broadcast
replicas (see [5], [6]) and the broadcasting can be faster
than consistency disbalancing. For that we explore
works for database load balancers ([7], [8]) and the pos-
sibility to contribute to existing load balancers to main-
tain the idea mentioned above. All existing load balan-
cers for databases support well-known balancer algo-
rithm like Round Robin, Least Connections etc. (see [7],
[8]). One of the components in some of solutions, im-
plemented in the paper, is load balancer dynamic API
[9], [10]. This application allows some features, par-
tially, can return the list of currently health checked
nodes. Also, we need to mention that databases have
parsers that allow parse database request [11] and there
are many optimizations, like Microsoft has done, for
example, in [12] and official doc is presented in [13].
Additionally, many of databases support caching com-
piled queries [14]. The last that we would like to men-
tion is our previous paper [15], where we form the
mathematical model with metrics for CAP-guarantees.

Core Material

Load balancing is the technique, that allows dis-
tributing requests between application instances or net-
work devices where this application live. The purpose
lies in optimization of resources usage, saving response
time and providing system fault tolerance. The load
balancing can be applied in different needs depending of
system requirements and the desired result and there are
also balancers for various database solutions [7]. A big
problem in existing solutions is that data on nodes have
to be the same. So there is no partitioning dataunits on
different sets of servers. But some of the load balancers,

© Rukkas K., Zholtkevych G., 2020

95

Cucmemu ynpaeninns, nagizayii ma 36'a3xy, 2020, eunyck 2(60)

ISSN 2073-7394

mentioned in [7], are opensource and algorithms for
requests balancing technique can be enhanced or new
algorithms are embedded. In this paper we investigate
and estimate this ability in terms of imitation modeling.

In the paper we go deep into the research for the
tradeoff of consistency and availability using load bal-
ancing algorithms enhancement. These algorithms are
based on the idea to balance only across consistent
nodes that have the given dataunit and on the idea that
spreading replica is fast enough to maintain list of con-
sistent nodes as big enough as needed. The several solu-
tions has been explored:

1) load balancer custom algorithm (that may be
contributed to opensource, so that needed solution is
maintained);

2) hybrid balancing solution on the level of custom
balancing algorithm that can be contributed to one of
balancers solutions and some applications that are im-
plemented in purpose to replace those features load bal-
ancer never supports;

3) own balancer database middleware component,
that balances consistent nodes without any general load
balancing features.

In this section we introduce these solutions in
terms of class and sequence diagrams below and esti-
mate effectiveness of each solution and discover pros
and cons and perspectives of solutions.

Let us firstly describe main components that will
be used in the approaches:

- Node object is a structure that contains the
unique identifier of node (like host or IP-address), the
time of last update and may be some other additional
info that can be used for request forwarding (used in all
represented approaches below)

- CNode hash table is the global mapping that
each dataunit (as a key) associates with a binary tree of
consistent Node objects that store given dataunit (used
in all represented approaches below)

- DNode hash table is the global mapping that
each dataunit (as a key) associates with a binary tree of
Node objects that store given dataunit (used in all repre-
sented approaches below). This table will not be changed
dynamically, only if the requirement to add new dataunits
appears. But this case is another story and the separate
interface can be simply implemented for that.

- Request is the request object that enhances
general database request object may represent if it is
write or read request, may contain the flag that identifies
if it is forwarded from another node and the flag identi-
fying if the given request is replica or request itself
broadcasted.

- Load Balancer Dynamic API that allows to
make some requests to Load Balancer. Here the ability
to get the list of current nodes that can accept requests
will be used.

Load Balancer Algorithm Enhancement. The first
solution comes up with custom balancer algorithm that
can be embedded into existing load balancer solution
and enhance some opensource solution. We present a
class and sequence diagrams (see Fig. 1 — Fig. 3). The
class diagram shows that the solution is based on exist-
ing load balancer algorithm implementation (for exam-

ple, on Round Robin to be more intuitive) and enhance
this algorithm by replacing the node list that request can
be forwarded to.

pkg

BasicUsedLBAlgorithm

+ read() : Dataunit BaseHashTableSolution

+ write() : void

T

LBCustomBalance

NodeHashTable
- replicas : map

+ add() : void
+ delete() : void

- storage : NodeHashTable

+ read() : Dataunit
+ write() : void
+ broadcast() : void

S

Dataunit Node

+ read() : Dataunit

+ represent() : DB object + write() : void

Fig. 1. Custom Load Balancer class diagram

The node list is based on mapping that associates
each data unit to the list of consistent nodes that store it.
Nodes are consistent in terms of that they have the up-to-
date latest replica version. So once a write request came
the association for this dataunit is updated with a new
node set, the first node that actually changed own replica.
That time all other nodes become inconsistent and with
every broadcast the map of dataunits and nodes is grow-
ing again until the next write request. Our purpose in this
paper was to find the ratio of number of nodes that store a
dataunit to the amount of write requests. This would al-
low to show that during distributed database lifetime
there are enough of consistent nodes that are able to
maintain desirable availability. Basing on these structural
and behavioral diagrams we created the imitation model
that allows to execute experiments on simulated solution
components. In the model a user can regulate the thresh-
old that is the minimum amount of nodes that must re-
spond at any moment of system lifetime.

Later we introduce the results of these executions
as graphics with dataunits as abscissa axis and number
of nodes that maintain a dataunit as axis of the ordi-
nates. These experiments is run on 100, 1000, 5000
write requests for hundreds of nodes in a datastore for
every approach presented in the paper. We emphasize
that in this solution the load balancing algorithm itself is
responsible for broadcasting the replicas across a datas-
tore and interact with hash map, where the key is
dataunit hash and the value is the list of consistent nodes
that contains given dataunit and another hash map that
differs only with the value of list of all nodes that con-
tains given dataunit. This algorithm has pretty simple
architecture to solve inconsistency problem.

But it has a lot of future problems related to the
fact that algorithms of load balancers should solve com-
pletely other problems, such as, fault tolerance, health
of the system etc. and it is not essentially to enhance
these algorithms like that.

Hybrid Load Balancing. This solution still en-
hances general load balancer algorithms implementa-

96

Ingpopmauiiini mexuonozii

tions, but built with the purpose of not
additional responsibility put on load bal-
ancer algorithm itself. For that load bal-
ancer API is designed that should interact
with load balancer algorithm and change
the node hash table adding new nodes to
a list for a dataunit or remove them once
new request came.

So that load balancing algorithm
just needs to interact with existing node
hash table on every request to make deci-
sion on the list of nodes where a request
can be forwarded. See the solution class
diagram in Fig. 2.

So that current approach still has to
implement custom algorithm that can in-
herit some of existing algorithms, but from
point of architecture view it is still better
than previous solution because the respon-
sibility of filling the CNode Hash Table
that the balancer should not definitely be
responsible for is put on the separate API.

Own balancer solution. And finally,
we want to introduce balancer approach
that shall not touch the load balancer al-
gorithms implementations at all. In this
solution general load balancer is still used
to maintain fault tolerance. This solution
is a more complex one, so for that we
need to introduce class diagram along
with algorithm for write and read request
cases. You can see class diagram in Fig. 3
and block schemas for read and write
database requests in Fig. 4 and in Fig. 5.

Thus, now we can say that this ap-
proach have some specialties:

— it does not change the initial load
balancer architecture and does not en-
hance its responsibility that cause load
balancer to remain still essential mecha-
nism to do; the application that stands on
front of the database and can be under-
stood as one of the database middleware,
should understand request incoming to
get a dataunit requested. Therefore this
operation will depend on database im-
plementation and optimization that is
made to improve this part of functional-
ity. Other operations will take: O(log n)
on taking the nodes from a hash table and
respond or O(log n) plus one more algo-
rithm repeat when request came to the
node that does not store given dataunit
taking into account the operations to take
fault tolerant nodes from dynamic load
balancer api and intersect them, which
will take O(1) as some constant time will
be wasted and O(n) for each operation
appropriately. So that in the worst case it
will be O(log n) +O(1) + O() +
+ O(log n)t+ O(1). Calculating this ex-
pression we get O(n) time complexity.

pkg

BasicUsedLBAlgorithm LoadBalancerAPI

; ; + broadcast() : void
i ﬁraitde(()).:l?/z?gumt + update_node_list() : void

T

LBCustomBalanceSimulation

- nodes and dataunits : map

+ read() : Dataunit
+ write() : void

+ read() : Dataunit
+ write() : void

Dataunit

+ represent() : DB object

Fig. 2. Hybrid Load Balancer class diagram

Load Balancer DynamicLBApi
R COEEEE
I ;\?;gé())'_?lzfgumt + get_current_nodes() : void
- 7
! 1
|
Vi BalancingDBMiddleware

Node - CNode Hash Table : NodeHashTable

- DNode Hash Table : NodeHashTable

+ read() : Dataunit

+ write() : void + write() : void

+ read() : Dataunit
+ broadcast() : void

Dataunit $

+ represent() : DB object

NodeHashTable

+ insert() : void
+ get_value() : void

Fig. 3. Database Load Balancer Class Diagram

act ReadRequestSchema)

get nodes for requested
dataunit
from DNode hash table

[current nodle in a list]

NS [no]

[no request broadcpst list]

N

Node respond
with dataunit

[yes]

get current fault

intersect two
sets of nodes tolerant nodes

forward read
request

to other Nodes

if broadcast list is
not empty

remove current node
from broadcast list
and update request
with new broadcast list

Fig. 2. Read request activity diagram for Load Balancing

97

Cucmemu ynpaeninns, nagizayii ma 36'a3xy, 2020, eunyck 2(60)

ISSN 2073-7394

Space complexity in the
worst case will be O(n),
because at maximum n
nodes will be in mem-
ory at a time;

— Dbasically, two

act WriteRequestSchema)

parse_request

[request is ot replical

[request is replical

other load balancer al-
gorithms will have
similar complexity
since they will need to
parse database request
to make decision on

<\/(Trequest source is externall

[no reque:

Node update
own replica

I middleware updates

CNode Hash Table

[request source is intlernall

it broadcast list]

what dataunit is re-
quested and what nodes

dataunit

-

get nodes for requested

from DNode hash table

will be chosen to for-
ward. Also, it shows the
problems that can ap-
pear on load balancer
side, when it will need
to deal with database
request somehow and it
is not what it is de-
signed for initially at
all. In these terms the
current approach should
suit better in the archi-
tecture point of view,

Node update
own replica

[current no

get current fault
tolerant nodes

intersect two
sets of nodes

e in a list]

®

[there is reqliest broadcast list]

send replicas
internal request
to other Nodes

if broadcast list is
not empty

remove current node
from broadcast list
and update request
with new broadcast list

because database side is
already optimized for
understanding database queries and a lot of solutions for
this already exist in a box.

Case study. So since the simulation models for
three of approaches have been implemented, we exe-
cuted the set of experiments on these models in the con-
ditions of 500 nodes in the network, 100 dataunits dis-
tributed across them at random and different number of
write and read requests. The executions were run for:
writes and reads, for both cases, when writes occur
more often, and opposite cases, when reads occur more
frequently than writes. All the simulation models have
availability threshold that is a number of nodes that
should stay available for any dataunit. The graphics
represent the dataunits as axis and number of consistent
nodes that stay consistent. In some graphics we can see
the number of consistent nodes that can answer rarely
reaches threshold, that means that sometimes the num-
ber of consistent nodes is less than threshold set as 30
nodes.

The solutions can be compared with the frequency
of that number of consistent nodes outreaches the set

Fig. 3. Write Request activity diagram for Load Balancing

limit. Look at the results of first approach simulation
(custom load balancer algorithm) in Fig. 6 — Fig. 9.
These figures represents the experiments run on small
amount of writes and reads and on large quantity of read
and write requests in order to show the way perform-
ance of algorithm changes.

The second set of figures (Fig. 10 — Fig. 13) repre-
sents results for custom algorithm with additional API
for the same numbers of writes and reads. As it can be
seen, this algorithm has extremely bad performance on
large amount of requests as for both of the cases when
write or read requests prevail. This makes implementa-
tion of this solution harder and not survivable for the
real business needs.

Let’s consider the last approach that simulation
model and algorithm is implemented for. Look at the
figures (Fig. 14 — Fig. 17) representing the state of our
simulated system that experiments were run in condi-
tions of the same amount of read and write requests. At
the pictures we can clearly see that custom load balan-
cer algorithm has best performance in the simulation.

350

300

250

w
8
3

200

°
g

consistent nodes
consistent nodes

H
5
3

N w 2
o 8 8
8 8 8

consistent nodes

5
8

20 40

dataunits

0 10 20 30 40

Fig. 4. Custom algorithm:
100 writes and 66 reads

Fig. 5. Custom algorithm:
5000 writes and 3333 reads

50
dataunits

60 70 80 90 © 0 80
dataunits

20

Fig. 6. Custom algorithm:
100 writes and 150 reads

98

Ingpopmauiiini mexuonozii

400

350

400
300

N
&

300

200
200

consistent nodes
consistent nodes

150

100 100

consistent nodes

20 a0 60 80 100 01 20 30
dataunits

o

Fig. 7. Custom algorithm:
5000 writes and 7500 reads

Fig. 8. Custom algorithm with API: 100
writes and 66 reads

50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90
dataunits dataunits

Fig. 9. Custom algorithm with API: 5000
writes and 3333 reads

w
S
S
w
=]

3 N
= il

consistent nodes
consistent nodes
&

g
———
w =

)

VAL S

400

consistent nodes

¥ L

30 40 50 60 70
dataunits

80 90 0 10 20

Fig. 10. Custom algorithm with API:
100 writes and 150 reads

30 40

Fig. 11. Custom algorithm with API:
5000 writes and 7500 reads

[1 20 30 40 50 &0 70 80 90

50 60 70 80 90 dataunits

dataunits

Fig. 12. Own balancing.
100 writes and 66 reads

400

W
<1
8

N
g
g
consistent nodes

consistent nodes

1]
2
=
£

300

200

consistent nodes

100

0 U - 0 f

AL

0 10 20 30 a0 50 60 70 80 90 0 10 20 30

dataunits

Fig. 13. Own balancing.
5000 writes and 3333 reads

But during implementation of this algorithm the
following problems will appear and slow down per-
formance:

- load balancer needs to know what dataunit is
requested and needs to parse somehow the database
request. It is not related to load balancer features and
what it is designed for, so that it meets all the issues that
databases had while optimizing parsers

- different databases have already implemented
algorithms to parse the request and optimized them.
Therefore, database has some options when understand-
ing a request and some databases supports parsing a
request partially, only a dataunit, for example, so that it
will speed up the performance at the database side in
compare with load balancer side solution

- load balancer will need to parse database re-
quest partially, but still database will need to parse the
request again to execute the query.

These conclusions mean that the third approach is
optimal after understanding some design details and limi-
tations. The third approach has still good performance, a
little bit worse, that the first one. But it can be clear that
after implementation of these algorithm the first approach
performance will be significantly decreased, because

40 50 €0 70 80 90 6

Fig. 14. Own balancing.
100 writes and 150 reads

o | AL L | B

G o 20 30 40 50 €0 70 8 90
—— dataunits

Fig. 15. Own balancing.
5000 writes and 7500 reads

parsing of database request is not the load balancer prob-
lem. Thus, the database request will be parsed twice: at
load balancer side to get a requested dataunit and data-
base side: to execute the query. So that, the first approach
loses in design complexity and impossibility to meet fur-
ther issues. Also, we do not consider the second approach
anymore since it has the worst performance of the algo-
rithm. For now, the optimal solution is the third approach
which is own load balancer as database middleware at the
side of every node. For now, we have already tried to
avoid some issues to be met, such as, selecting broadcast
list in every request that will avoid flooding other with
requests, optimizing number of requests to dynamic API
of load balancer, removing current node from broadcast
list to avoid cycling, replicas version implemented as
timestamps to avoid conflicts.

Conclusions

The purpose of the current work was the for-
mation of algorithm that will improve CAP-guarantees
or balance them for specific business requirements. In
order to achieve it three approaches were designed, in-
vestigated, compared and estimated using simulation
computer model. During algorithm design all the inves-

99

Cucmemu ynpaeninns, nagizayii ma 36'a3xy, 2020, eunyck 2(60) ISSN 2073-7394

tigated approaches have already shown their weaknesses tributed database with existing software, the architect
and advantages and allowed to choose one of solutions could use the recommended algorithm as a distributed
basing on best practices analyzing technical weaknesses database middleware component so that there could be
of every solution. As a result, when designing new found the trade-off for CAP-guarantees that is necessary
software with distributed datastore or integrating dis- for specific software requirements.

REFERENCES

1. Banothu, N., Bhukya, S. and Sharma, K. (2016). Big-data: Acid versus base for database transactions. 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), available at
https://ieeexplore.ieee.org/document/7755401.

2. Gilbert, S. and Lynch, N. (2002). Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web ser-
vices. ACM SIGACT News, 33(2), p.51, available at https://users.ece.cmu.edu/~adrian/73 1-sp04/readings/GL-cap.pdf.

3. Brewer, E. (2012). CAP twelve years later: How the "rules" have changed. Computer, 45(2), pp.23-29, available at
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/.

4. Calder, B., Simitci, H., Haridas, J., Uddaraju, C., Khatri, H., Edwards, A., Bedekar, V., Mainali, S., Abbasi, R., Agarwal, A.,
Haq, M., Wang, J., Haq, M., Bhardwaj, D., Dayanand, S., Adusumilli, A., McNett, M., Sankaran, S., Manivannan, K., Rigas,
L., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y., Srivastav, S. and Wu, J. (2011). Windows Azure Storage:
a highly available cloud storage service with strong consistency. Proc. of the Twenty-Third ACM Symposium on Operating
Systems Principles - SOSP '11, available at http://web.eecs.umich.edu/~mozafari/winter2014/eecs684/papers/azure.pdf.

5. Burmester, M., Le, T. and Yasinsac, A. (2007). Adaptive gossip protocols: Managing security and redundancy in dense ad
hoc networks. Ad Hoc Networks, 5(3), pp.313-323, available at http://www.cs.fsu.edu/~burmeste/adhocjourn.pdf.

6. Haas, Z., Halpern, J. and Li Li (2002). Gossip-based ad hoc routing. Proceedings. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societiesm, 3, pp-1707-1716, available at
https://ieeexplore.ieee.org/document/1019424.

7. Veerman, G., Breuk, R., 2012. Database Load Balancing , Mysql 5.5 Vs Postgresql 9. Amsterdam: Universiteit van Amsterdam,
System & Network Engineering, https:/www.os3.nl/_media/2011-2012/courses/lia/rory breuk gerrie veerman - report.pdf.

8. Joshi, S., Ameta, S., & Lavania, G. (2019). Balanced Load in Distributed System with NoSQL Middleware. International
Journal of Emerging Technologies and Innovative Research (www jetir.org), 6(5), pp.133-137, available at
https://pdfs.semanticscholar.org/f6fd/7e1c441040ae0a022¢cb19d930df1ef9bd07b.pdf.

9. Mhedhbi, M., 2017. Dynamic Configuration With The Haproxy Runtime API — Haproxy Technologies. [online] HAProxy
Technologies, available at https://www.haproxy.com/blog/dynamic-configuration-haproxy-runtime-api.

10. Dynamic Configuration Of Upstreams With The NGINX Plus API - NGINX Documentation. n.d. NGINX Docs [online],
available at https://docs.nginx.com/nginx/admin-guide/load-balancer/dynamic-configuration-api.

11. Zelle, J. M., Mooney, R.J. (1996). Learning to Parse Database Queries Using Inductive Logic Programming. AAAVIAAL 2,
pp. 1050-1055, available at https://pdfs.semanticscholar.org/1¢9d/f99cce1903d34c53025e86¢7233 1bbfbe08f.pdf.

12. Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollar, P., Zitnick, C.L. (2015). Microsoft COCO Captions: Data Col-
lection and Evaluation Server. ArXiv, abs/1504.00325, available at https://arxiv.org/pdf/1504.00325.pdf.

13. 2019, Optimize Cost And RU/S To Run Queries In Azure Cosmos DB — docs.microsoft.com [online], available at:
https://docs.microsoft.com/en-us/azure/cosmos-db/optimize-cost-queries.

14. Patterson, R., Gibson, G., Ginting, E., Stodolsky, D. and Zelenka, J., 1995. Informed prefetching and caching. Proceedings of
the fifteeth ACM symposium on Operating systems principles - SOSP '95, available at
http://www.cs.columbia.edu/~nieh/teaching/e6118 s00/papers/p79-patterson.pdf.

15. Rukkas, K., Zholtkevych, G. (2015). Distributed Datastores: Towards Probabilistic Approach for Estimation of
Dependability. 11th International Conference on ICT in Education, Research, and Industrial Applications, 1356, pp.523-534,
available at https://pdfs.semanticscholar.org/5eb0/01632c6cd6da2e4ec92adbc288939de0f419. pdf.

Received (Haniiiuuia) 26.03.2020
Accepted for publication (ITpuitasita no npyky) 06.05.2020

BanancyBaHHS y3rofzKeHOCTi y PO3IOdiJICHOMY CXOBHILI JAHUX
K. M. Pykkac, I'. I'. XKonrkeBuu

AnoTtanis. IIpeqverom i€l crarti € CAP-rapanTii posnoainieHux 6a3 1aHHX, 30KpeMa, JOCTYIHICTh Ta Y3TOMKEHICTb.
MeTot0 € CIIpOeKTOBAHE PillIeHH, SIKe CTaHe IHCTPYMEHTOM OallaHCYBaHHS Y3TOMKEHOCTI SIK OJIHOI 3 TapaHTii HaJ[IHHOro po3Io-
JIJIEHOTO CXOBUINA st Oyab-sIKUX Oi3Hec MmoTped i sIKe T03BOJIHUTH HE MOTIPIINTH 3HAYCHHS TOCTYIHOCTI. Takuil anropuT™ Mir
Ou OyTH iHTEerpoBaHMH y iHPPACTPYKTYpy PO3MOLUICHOrO CXOBHIIA JaHHUX i OBHHEH OYTH OJHOIO 3 MEPIIUX IIPOrpaM Ha IULIXY
1o BukoHaHHst SQL 3anuTy 1 MOXe BUKOPUCTOBYBAaTH Pi3HI MOIYJi HPOMIXHOIO IPOrpaMHOro 3a0e3leueHHs 0a3y JaHUX Ha
By3i1y. JIiisl OCSTHEHHsI boro Oyinu po3poOiieHi i NOPIBHAHI TP abTEPHATUBHUX PIICHHS Ul OallaHCYBaHHS KOHCHCTEHTHHX
BY3J1iB, JIOCHI/PKeHa (haKTUYHA MOXJIMBICTb pealti3alii KOXHOro 3 pimeHs. MeTogaMu po3poOKH CTalld Taki iHCTPYMEHTH, SIK
UML MopzeintoBaHHs, KOMII'IOT€pHA MOJIENb, IO peajli3ye iMiTaliiHi Moneni Ui BCiX Po3poOJICHUX pIlleHb, fKa J03BOJIUIIA
IIPOBECTU HAOIp EKCIIEPUMEHTIB Ha JIOCIDKEHHX IMITAIliHHIX MOJEIISX 1 OLIHUTH CKJIAIHICTh Ta MOXIIMBY IIBUJIKO/IIO, 3pOOUTH
BUCHOBKH, BUOpaBIIM OJMH 3 HAHONTUMAJIBHIIINX MiAXOMIB IS MOAAJIBIIOI PO3POOKH Ta PO3LIMPEHHS. SIK BUCHOBOK, FOTOBE
OITHUMaJIbHE CHPOCKTOBAHE 1 OLIHEHEe pIllleHHs Ul OalaHCyBaHHS Y3TOJDKEHOCTI, 1o i Oyio mMeToro crarri. Bono moxe Oyru
3aCTOCOBaHE Yy SKOCTI OZHOr0 3 0a30BHX KOMIIOHEHTIB IMPOMIXHOI'O IPOrpaMHOro 3a0e3IeUeHHs PO3NOAUICHOI 0a3K JaHUX Ha
eTari MPOeKTyBaHH: Oy/Ab-sIKOr0 IPOrPaMHOro 3a0e3NeUeHHs TAKUM YHHOM, 1[0 MOXKYTh OYTH JTOCSATHEHI 30aaHCcOBaHi rapaHTii
UL HaJIHOr O CXOBMILA HA PaHHBOMY €Tali iMIuieMeHTallii 6i3Hec norpeo.

Karw4yosi ciaosa: CAP-rapanrii, OaiaHCyBaHHS HaBaHTAXXEHHS, PO3NO/IICH] 0a3U JaHMX, BUCOKA JIOCTYIHICTb, KOPCT-
Ka Y3TODKEHICTb.

100

