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CONTROL AND CORRECTION OF DATA ERRORS IN A RESIDUE CLASS

Abstract. The subject of the research in the article is the methods of control and correction of single errors of integer
data are presented in the residue class (RC), which allows to increase the efficiency of using RC when building com-
puter systems and components. The purpose of the article is to develop a method for correcting single data errors in
RC. Tasks: to study the code structures presented in RC to determine the possibility of control and correction of data er-
rors; to investigate the effect of RC properties on data control and correction operations; to develop a method for cor-
recting single data errors in RC. Research methods: methods of analysis and synthesis of computer systems, number
theory, coding theory in RC. The following results are obtained. An analysis of the correcting capabilities of codes in
RC showed the high efficiency of using non-positional code structures, which is due to the presence of primary and sec-
ondary redundancy in such structures. The article presents a method for correcting one-time data errors in RC. Exam-
ples of detecting and correcting data errors in RC code are given, which confirms the theoretical results obtained. Con-
clusions. Studies have shown that the use of codes in RC makes it possible to build an effective system for monitoring
and correcting data errors with the introduction of minimal code redundancy. That is, when certain conditions are met,

the introduction of one control base allows not only monitoring, but also correction of single data errors.
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Introduction

In general, in order to verify, diagnose and correct
errors a code structure requires a certain error-correcting
capability. In this case, code is required to be introduced
to data duplication, i.e. information redundancy should
be implemented. All of the above fully refers to a non-
positional code structure (NCS) in residue classes (RC)
[1-3]. For each random RC the amount of redundancy
R=M,/M uniquely determines correction capability
of a non-positional error-correcting code. Error correct-
ing codes in RC can have any given values of minimum

code distance (MCD) dRO

min °

which depends on the

value of redundancy R . The acquainted theorem [1-2]
establishes a link between error-correcting code redun-

dancy R, the value of MCD dr(n[ff ), and the amount of
RC check bases k.

Error-correcting code has MCD values dR in

min
case when the degree of redundancy R is not less than
the product dr(n[fnc ) —1 of RC bases.
On the one hand we get
d\RO [

R >H min

but on the other hand

R= MO/M Hn+k /Hll 11

In this case, it’s correct to state that

dRO 1=,
or
dRO =41, (1)

There are two approaches to solve the problem of
providing NCS with all required error-correcting prop-
erties in RC.

non-positional code structure, residue classes, positional numeral systems, minimum code distance, error-

The first approach. If the requirements for error-
correcting properties of NCS are known, for example,
depending on amount of errors being detected #4, or
corrected ¢, required information redundancy R
should be introduced, using the amount of & or the val-
ue {m,,} of check bases. Redundancy R determines

minimum code distance d‘®¢) of NCS in RC. Then,

min
according to the error-control coding (ECC) theory for
an ordered (m; <m;,;) RC we have that

<dgl -1, @
tier. <k 5 3)
RC
teor <[ (4587 -1) 2], o)
Leor. S [k/z] : (5)
The second approach. For a given NCS
Apc =
=(allay [l @iy 1@ | gy 1oty 1]l @)

(for a given value k) its error-correcting capabilities
(determined by the dRO

min
fined by the expressions (3) and (5).

Note that, if an ordered RC is extended by adding
k check bases to n information modules, then MCD

value) of RC code are de-

dr(n[ff ) of the error-correcting code is increased by the

value & (see expression (1)).
The values of dr(n[ff ) can be also increased by de-

creasing the number 7 of information bases, i.e. by tran-
sitioning to less accurate calculations. It’s clear that in
RC between error-correcting R properties of error-
control codes and calculation accuracy W inverse pro-
portion exists. The same computer can perform arith-
metical calculations or any other math operations both
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with high W accuracy but a low error-correcting R
capability and with lower W accuracy, but with a
higher capability R of error detection and correction
in order to verify, diagnose and correct data faults, as
well as to demonstrate higher data processing perform-
ance (the time to execute basic operations is inversely
proportional to n information bases in RC) [2-4].

The purpose of the article is to develop a
method for correcting single data errors in RC.

The main part

Now we’ll analyze the process of single-error cor-
recting data capability in RC given the minimal infor-
mation redundancy by introduction of a single (k=1)
check base.

In this case, according to the error control coding
theory in RC [1, 5], MCD is equal to the value

dB) =41,

min

If k=1, then MCD is d*9) =2, which, as ac-
cording to the general error control coding theory, en-
sures any single-error detection (an error in one of the
residues a; (i=1,n+1)) in NCS.

In general, just as in the positional numeral system
(PNS), the process of data error correction in RC con-
sists of three stages.

The first stage — data checking (correctness or in-
correctness verification of the initial number Ap-). On

the second stage diagnosing the false IZRC number (de-

tection of a single corrupted residue g; of the number
Agc to the base m; in RC). And, finally, on the third

stage correcting the invalid residue g, to its true value

a; of the number, i.e. correcting false Ap- number

(getting the correct number Ape = 4, ).
The degree of information redundancy R (code

error-correcting property) is estimated by the value of
MCD  d,;, "%

min

MCD is defined by the ratio dRO =k +1, where k is

min

. As previously noted, the value of

the amount of check bases in an ordered RC.
Let’s start with the NCS

Ape = (@ [lag || Ny |l 1 a; [ @iy 1]l @y ||l @)

in RC having a minimal (k£ =1) additional information
redundancy. In this situation it’s considered that
(RC) _
de ' =2.
According to the error control coding theory in
PNS if the minimum code distance is granted to be
(PNS) _
dmin =2 ’
a single error in a code structure is ensured to be de-
tected. In PNS a single error is understood as a corrup-
tion of a single information bit, for instance 0 —1 or
1— 0. In order to correct this single error it’s required
to ensure the condition, when

(PNS) _
i =3.

Contrary to PNS, a single error in RC is under-
stood as a corruption of a single residue @; modulo m; .

Inasmuch as the residue a; of the number Ap- modulo
m; contains z = {[log,(m; —1)]+1} binary bits, then it’s

formally correct to be considered that if

dRO =2 (k=1)

min
is within limits of a single residue g;, an error cluster

can be detected in RC, with its length not exceeding z
binary bits. However, in RC, as it is shown in literature
[1, 2, 6], there are some cases when a single error can be
corrected while
RC
df) =2
In the light of specific features and properties of
NCS representation in RC an error-correcting capability
given
RC
dr(nin ) =2
can be explained in the following manner.
1. A single error in PNS and in RC are different
concepts, as it was shown before. With that being said,

MCD dr(n}ijévs ) for PNS and dr(n[ff ) for RC has different
meaning and measure.

2. Existing (implicitly) intrinsic (natural, primal) in-
formation redundancy in NCS, being stored in residues
{a;} due to their forming procedure, has a positive effect

(from the perspective of increasing data jam-resistance,
transfer and processing reliability) that kicks in only with
the presence of a subsidiary (artificial, secondary) infor-
mation redundancy.

An artificial information redundancy in NCS is be-
ing introduced by using (additionally to » information
bases) k£ check bases in RC. A distinguishing feature of
RC is its significant display of the intrinsic information
redundancy only if the subsidiary one is also present, due
to introduction of check bases.

3. As shown in [6-8], error control code in RC
4RO

min

with mutually prime bases has the MCD value of
only if the information redundancy level is not less than
the product of any dr(n[fnc )1 bases of a given RC.

The availability and interaction of primary and
secondary redundancies during the subsidiary tests (time
redundancy usage) of error-correcting process, which
may provide a single-error error-correcting capability in

RC, while d'f) =2 (given k=1).
Indeed, according to the expressions (3) and (5) for
an ordered RC following conclusions can be made: with

a single (k =1) check base m,,; in RC, the NCS

A=(a|lay || My 1 a; @ 1] -1l @, |l @pp)

(RC)

can have several values of &, . In this case, it de-

pends on the value of check residue m,.. If, for every
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different RC modulus condition m; <m, ; (i =1,n)is

met, then conclusion can be made that dr(nlff ) =2, as
according to the expression (1), and #4,, =1, according

to the expression (2). If the condition m;-m; <m,,

(i,jzl,_n; i#j) is met across the totality of {m;}
information bases for a random modulus pair, then

dBO =3 and 14, =2.

min
Thus, for the NCS in RC given k=1, the MCD
dRO

i can vary, depending on the value of RC check
base m,,;. Assume, RC is given information bases

m=3, my=4, my=5, my=7 and moreover
my =m, ; =ms=11. In this case error verification of

any single corrupted NCS residue can be ensured.

Number representation specificity in RC in some
cases allows not only to detect an error, but to find a
place of its occurrence with the use of a single check
base, which would be impossible to do in the PNS,
utilizing existing methods of detecting and correcting
errors.

Let’s assume, that in the corrupted (A4 > M ) num-
ber

A=l ay |-l g 1 | @z |l Nl ay [l @ppr)
the error
a; =(a; + Aag;)mod m;

is verified to be present in the residue ¢; modulo m; .
We’ll take a look at the ratio, which makes it pos-
sible to correct an error in a given residue 4, [1].
It’s clear that:

A=(A4+Ad)mod M, (6)

Basing on that the error magnitude can be equated
to

A4=(0[[0]|...[[0]| A [|O]... | O1}0),

then the correct (A<M ) number A4 can be expressed
as follows:

A=(A-Ad)mod M, =
=[(“1 lay Il My a1l ay Il a, || an+1)—
—(0110]|...110]| Ag ||0||...||O||0)}modM0 =
=l llay||...I1 ;1 || (@; — Aa;)modm, || ;. ]...

|| a, || an+1]mOdM0.

We’ll quantify the value of A . Inasmuch number

A is correct, i.e. is contained in numerical interval
[0, M) , then the following inequality will be fulfilled:

A=(21—AA)modM0<M. (7)

Basing on the value of the error A4 is equal to

AA=Aaq;-B;,
then the inequality (7) will be expressed as:
A—Aa; B, —r-My<M or

A=Aa;-B;—r-My<My/m,, (r=1,2,3,.),

A—(G;—a;)-Bi—r-My<My/m

n+l»

,Zlf(al.fdl.)-Bi—r~M0<M0/m

n+l>
(al-f dl-)-Bl- <M0/mn+lf;1+r-M0,
a;—a; <(My/my,,,)/B;— A/ B;j+r-M/B;,
a; <a;+(My/my,,)/ B;— Al B;+r-My/B;. (8)

Since the orthogonal base of RC module m; takes
the form of B; =m;-M,/m;, then the expression (8)
shows up as:

a; <a; +(m;+r-m;-m, )/ (m;-m,,)— A/ B; or
a; <dl-+ml-(1+r-mn+1)/(n_1i-mnﬂ)f;l/Bl-. 9)

Inasmuch as the value of the residue ¢; is a natural
number, then the value of

my (L4 r-m 1)/ (7 -m,, )~ A1 By,
as shown in the expression (9), should be an integer.

Thus, taking an integral part of the last ratio, the
formula for correcting error in the residue & of the

number 4 will be:

.(1+r-mn+1)
(1 -1,y41)

a; = (@; +[m —A4/B;)modm,]. (10)
We’ll have a look at the examples of error correc-
tion in RC.
Example Nel.
number

Perform data verification of the

Arc = (O 0[|0][0][5)

and correct it if required, when RC was given informa-
tion m;=3, my=4, my=5, ms=7 and check

my =ms =11 bases.
Thereby,

n 4
M =Hmi =Hml- =420
i= i=l
and
My=M-m,, ; =420-11=4620.

Orthogonal RC bases B; (i=1,n+1) and their
weights are equal
By =(1||0[|0[|0[[0)=1540, my =1;
By =(O[[1[[O] 110]/0)=3465, my =3;

By =(0[[0[[1][0]]0)=3696, m3 =4;
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By =(0[[O[| O[] 0) =2640, iy = 4;
Bs=(0][0]/0]|0[1)=2520, in5s =6.

I. Data verification of Ap-=(0|/0]|0]0]5). Ac-

cording to the control procedure [1] the value will be
defined as:

n+l 5
Apys = (Z a; -B,.JmodMO = [Zai ~Bl-JmodM0 =
i=1 i=1
=(0-1540+0-3465+0-3696 +0-2640 +
+5-2520) mod 4620 = (5-2520) mod 4620 =
=12600(mod 4620) = 3360 > 420 .

Thus, in the process of data verification it was
evaluated, that

Apc =3360>M =420.

In this case, with the possibility of only single er-
rors appearing, conclusion is made that the number in

question Az =(0[]0[0][0][S)  is incorrect
(3360 > M =420).
In order to correct the number

;13360 =(0]|01]|0]|0]|5) data is required to be verified
first, i.e. corrupted residue G; has to be detected. Once
done, the true value of the residue a; modulo m; needs
to be defined, whereupon the corrupted residue g;
should be corrected.

1. Data diagnosing of 43350 =(0]/0]0]/0]5).
According to the mapping method [1, 2], possible pro-
jections ;lj of the number ;13360 =(0]|0]|0]|0||5) are:

A =0]0]0]5), 4 =0 0[0]5),
A;=(0][0]| 10]15), 44 =(0]0]/0]|5)
and A5 =(0/0/0]/0).

Computational formula for the values A4 ipns of

PNS number projections is written as [1]:

n

Aipys=| 2 (#-By)|modM;. (11)
i=l; j=1, n+1.

According to the expression (11) we’ll compute all

the values of A i pns - Once done, we will make (n+1)

comparison of the ;1]- pys numbers to the number

M =M/ m,, . If there are any numbers not being con-
tained in the informational numeric interval [0, M),
which contains & correct numbers (i.e. Zlk >M),

among 4;

; projections, then conclusion is made that

these & residues of the number A are not corrupted.
Only the residues among the rest [(n+1)—k] number

Agc residues can be false.

The set of and the totality of the quotient B; or-

thogonal bases are shown in Table 1 respectively.

Table 1 — The totality of the quotient orthogonal
RC bases

—'—IB}“ i 1 2 3 4
J
1 385 616 1100 980
2 385 231 330 210
3 616 693 792 672
4 220 165 396 540
5 280 105 336 120

Now then (Table 1):

4
Aipys =(Zai -BﬂJmodMl =(0-385+0-616+

i=1
+0-1100+5-980) mod 1540 =280 <420 .

Arriving at conclusion, that the residue a; of the

number ;11 is possibly a corrupted residue a; ;

4
Ay s =(Zai ~Bl-2JmodM2 =(0-385+0-231+

i=1
+0-330+5-210)mod 1155 =1050 > 420 .

Hence, the residue a, is ensured being not cor-
rupted;

4
Asps =[Zai -BI-3JmodM3 =(0-616+0-693+

i=1
+0-792+5-672)mod 924 = 588 > 420 .

Deduced, the residue a; is ensured being not cor-
rupted;

4
Aypns = [Z a;- Bi4Jm0dM4 =
i=1

=(0-220+0-165+0-369+5-540)mod 660 = 60 < 420 .

Conclusion: the residue a4 modulo m, of the

number ;14 is possibly a corrupted residue ay .

4
Aspys = [Z;, 4; 'BistOdMs :
i=

Since M5 =M =420, the residue as of the check
module m; =ms will be always among the totality of
possibly corrupted residues a; of RC number.

Overall conclusion. During data diagnosing of
A=(0]|0][0][0]|5) in NCS, the residues a, =0 and
a3 =0 were ensured not being corrupted. The residues
to the bases m;, m, and ms might be corrupted, i.e.
the residues @; =0, a, =0 and a5 =5.
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In this case it’s required to correct the residues a,
a and as.

III. Correcting data errors ;13360 =(0]/0]|0]|0]5) .
According to the acquainted [1] expression:

[—{Mgﬂmm (1)

My =My i

we will correct possibly a;, a, and as corrupted resi-
dues a;, a, and a5, where r=1,2,3,....

AD modm; =
B

+[3.(1+r.11)_3360Dmod3=1;

It turns out that:

alz(—l{w_

My =My

0y = 54{w_i} modm, =
My -1y By
=0+ 7_12_@ m0d7=0’
11-4 2640

as =(55 +{mn+1 (L+7-my,) _BiDmOdm”H =

(=]

11-1 1540

My g - My 4 5
(54 11-(1+11)_3360 modl1=0
11-6 2520

With accordance to the computed residues a; =1,
ays =0 and a5 =0 we are correcting (recovering) the
corrupted number ;13360 =(0]|01]|0]|0]|5), i.e. the cor-
rected number becomes ‘Zlcor. =(1]]0]10]10]5) -

To validate corrected data, as according to the ac-
quainted [1] expression, we’ll define the value of the

number ‘Zlcor. =(1/]0]|0]|0|5) in the following way:

5
Acor pNs =(Z“i ~BiJmodM0 =(a;-By+ay B, +

i=1
+0-3465+0-3696+0-2640+5-2520) mod 4620 =
=14140(mod 4620) =280.

Thus 280 <M =420, the number
Aygo =(1]]0]10]| 0] 5) is correct.

In order to validate correctness of the number
4360 We'll make a computation and comparison of the
values to the correct residues a, =0 and a3 =0. In this
case they are

ay =[ 04| LD 3O 0449
11-3 3465

and

as =[ 0+ 2D 300N 45
11-4 3696

The resulted computations a, =0 and a; =0 of
the residues modulo m, and mj; in RC verified correct-
ness of the corrupted number ;13360 =(0]/0]|0]|0]5) .
Thus, the original number Agzc=(00[/0]0]5) is
corrupted Ay, Wherein the single error Ag; =1 oc-
curred modulo 7, . This error made the correct number
Aygo being corrupted Ass¢p -

In order to verify if the correct number A,gq, is

true, subsidiary tests on the process of corruption and
correction of the number A4,g, modulo m =3 are re-

quired. The amount of possible N - incorrect (cor-
rupted) IZRC codewords (if only a single error occurred)
for each correct A~ number are

n+l

NCC =Zmi—(i’l+l).

i=1

Test results have shown that corruption of the resi-
due a; modulo m; =3 of the correct number A,g, can
produce only two incorrect numbers:
A3360=(0110]|0]]0]|5) and Ay =(2]]0]|0][0]5).
This points to the fact that the corrected number
Aeor. = Ar30 =(1]01]]0]|0]|5) is both correct (is con-
tained in the interval [0, 420)) and true. The trueness of
the resulted number A,g, = (i [|0]|01]|0]|5) is confirmed
by the fact that the single error Ag; =2 to the base
m =3 converts (A= (A+Ad)mod M, =
=(1[[0][O[[0][5)+2[[0]|0]/0]10) =[(1+2)mod 3|0
10110(/5]1=(0]/0]|0]|0]|5)) this number to the unique
incorrect number A;350 =(0/0(/0]/0]5) .

Example Ne2. Assume, the correct number is
Aygo =(1]]0]]0]|0]|5) and assume that Ag; =1. In this
case

A=(A+A)mod My =(1]0]0]/0[|5)+(1[0] 0]
10110)=[(1+1)mod3][0[[0][0]|5]= 2]]0[|0[0] 5) .

This RC number is relevant to the number 1820 in

PNS, i.e. the number ;11820 is incorrect. We’ll correct
the number ;11 g20 NOW.
Data diagnosing should be made ahead of correcting the
number Ajg,,. To do this we’ll map projections
4;(j=1,5) of the number Agy=(20[0]0]|5)
first. Resulted RC code structures are:

A =0]0]0]5), 4 =(2]0[|0]5),

A =(2)10[015), 4, =(2[10]|0]|5), 45 =(2]/0]]0]0).
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All the projections of A i pns are:
4y pys = (5-980)mod 1540 = 280 < 420 = M ;
Ay pys =1925(mod 1155) =770 >420= M ;
Ay pys =4592(mod 924) =896 > 420 = M ;
Ay pys =3140(mod 660) = 500 > 420 = M ;
As pys =560(mod 420) =140 <420 =M .

Inasmuch as A, pyg, A3pys and Agpys > 420,
the conclusion is made that the residues a, =0, a; =0
and a, =0 of the number A5 =(2]/0]/0]|0]|5) are not
corrupted. Only the residues a@; and a5 can be cor-
rupted @; =2 and a5 =5.

We obtain, that:

=(2+[3,27-1,18])mod 3 = 4(mod3) =1.

Hence, the corrected residue modulo ny is a¢; =1.
In a like manner the residue a5 =5. Applying the re-
sults @, and as the corrupted number

Aigoo = (210]]0][0]15)
is corrected. As a final result the corrected number is
Aygp =(1]|0]|0]O]5).

Conclusions of research

Contrary to PNS (positional numeral system),
arithmetic RC (residue class) codes feature additional
correcting properties. Thus, NCS (non-positional code
structure) involves both intrinsic and subsidiary infor-
mation redundancies, that in some cases results in al-
lowing to correct single errors in RC, while MCD is

R . . .
dr(ninc ) =2 However, correcting single errors requires

performing subsidiary tests of data checking, i.e. time

redundancy usage, additionally to information redun-
dancy. Examples of specific implementation of a single
error correcting procedures were introduced, that prove
reviewed method is possible to be implemented in order
to correct data errors in RC.

My =My

a =(—1+|:m1'(1+r'mn+1)_

iDmodmlz
B

_[ gy 301D 1820 4} s
111 1540
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KonTpoJb Ta Kopekuisi NIOMIJIOK JAHUX Y KJaci JJMIIKIB
B. A. KpacHobaes, C. O. Kommvan

AnoTtanis. [IpeamMeToM m0CIiPKEHHS y CTaTTI € METOIM KOHTPOIIIO Ta KOPEKIi1 OJHOPAa30BHX IMOMIJIOK LIJIOYHMCIIOBHX
JIaHKX, AKi npencrasieHi y kiaci aumkis (KJI), mo no3Bonse nigsumuty edexrunicts Bukopuctanus KJI npu noGynosi kom-
MTFOTEPHHUX CHCTEM 1 KOMITOHEHTIiB. MeToI0 CTaTTi € po3poOKa MeToy Kopekuii oHopa3oBux nomMmwiok nanux y KJI. 3aBpanns:
MIPOBECTH aHaJIi3 KOOBUX CTPYKTYp npeacraBieHux y KJI s BU3HaueHHST MOMKIIMBOCTI KOHTPOJIIO Ta KOPEKIii TOMUIIOK JaHHX;
nociizuty BruuB BiaactuBoctedl KJI Ha mpoBeieHHs onepaliiii KOHTPOITIO 1 KOPEKIii TaHNX; PO3pOOUTH METO KOpeKLii ogHopa-
30BHX NoMIIOK gaHuX B KJI. Meroam mociskeHHsi: METOIM aHANi3y Ta CHHTE3y KOMI'FOTEPHHUX CUCTEM, TEOpisl YUCell, Teopis
konyBaHHs y KJI. OTpuMmani HacTynHi pe3yabTaTH. AHaJi3 KOpUTyBaJIbHUX MokimBocTel koniB y KJI mokasaB BUCOKy edeKTu-
BHICTh BUKOPHCTAHHSI HETIO3ULIITHUX KOZOBHUX CTPYKTYP, sika 00yMOBJICHA HAsIBHICTIO B TAKMX CTPYKTYpax MEPBUHHOI 1 BTOPHH-
HOI HaaMIpHOCTI. Y CTaTTi MPEACTAaBICHO METOJ BHIIPABJICHHs OIHOpa30BUX nommiok nanux y KJI. HaBexeno npukiagy Buss-
JICHHSI Ta BUIIPaBJICHHS] IOMWIOK MaHux y koai KJI, mo miarBepmKye oTpuMaHi TeopeTidHi pe3ynsratu. BucnoBku. IIpoBeneHi
JIOCTIJKEHHS TIOKa3ajd, 110 BukopucranHs koaiB y KJI nae MoxnuBicTs 1o0ynoBr epeKTUBHOI CHCTEMH KOHTPOJIIO Ta KOPEKIIii
TIOMIJIOK JTaHUX IIPY BBEJICHHI MiHIMaIbHOI KotoBoi HaaMipHOCTI. ToOTO, IpH BUKOHAHHI IIEBHUX YMOB, BBE/ICHHS OJIHI€T KOHT-
POJIEHOT OCHOBM JIO3BOJISIE HE TUTBKH MPOBOIANUTH KOHTPOJIB, & i BAKOHYBATH KOPEKIi0 OHOPA30BUX IOMUIIOK JIAHHX.

Kaw4yoBi cioBa: Henmo3uuiiiHMX KOJOBa CTPYKTypa, Kiac BiJpaxyBaHb, MO3WIIIHA CHCTEMa YHCIICHHS, MiHIMaJIbHA
KOJIOBa BiJICTaHb, 3aBaJIOCTiIHKe KOYBaHHS, KOHTPOJb i KOPEKLIis JaHMX.
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