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NEW MATRIX BASED ALGORITHM FOR CALCULATION
OF IMPORTANCE MEASURES

Abstract. The system reliability/availability is complex term that is evaluated based on numerous indices and measures.
There are different methods for the calculation of these indices and measures. Some of the most used are importance measures.
These measures allow to evaluate the influence of fixed system components or set of components to the system
reliability/availability. Importance measures are used to allow for various aspects of the impact of system elements on its
failure or operability. Analysis of element importance is used in the system design, diagnosis, and optimization. In this paper
new algorithm for the calculation some of importance measures is developed based on the matrix procedures. This paper goal
is development of new algorithm to calculate importance measures of the system based on the matrix procedures that can be
transformed in the parallel procedures/algorithm. This algorithm is developed based on the application of Logical Differential
Calculus of Boolean logic for importance analysis of system. The application of parallel algorithm in importance analysis
allows the evaluation of system of large dimension. Importance specific of the proposed matrix procedures for calculation of
importance measures is the application of structure function for the mathematical representation of investigated system. This
function defined the correlation of the system components states and system reliability/ availability. The structure function in
this case is defined as truth vector to be used in the matrix transformation. The truth vector of Boolean function is column of

the truth table of function if the values of the variables are lexicographically ordered.
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Introduction

One of parts of the reliability analysis is
importance analysis [1, 2]. The importance analysis
allows evaluation of influence of every system
component to the system reliability or availability. This
evaluation is implemented based the special indices that
are named Importance Measures (IMs). IMs are used
today to allow for various aspects of the impact of
system elements on its failure or operability. Analysis of
element importance is used in the system design,
diagnosis, and optimization. There are different
algorithms to compute these measures that are caused
by the mathematical representation of investigated
system [3]. The structure function has been introduced
for system representation as one the first mathematical
model and in case of the system analysis in stationary
state can be interpreted as Boolean function [4]. This
function maps the system components states and system
state.

Authors of studies [2, 5, 6] shown that the
reliability analysis of system can be implemented by
application of Logical Differential Calculus. The
algorithms for calculation of frequency indices have
been studied in [6]. The definition and computation of
IMs based on Logical Differential Calculus, in
particular Direct Partial Boolean Derivatives (DPBD),
have been proposed and investigated in [2, 5]. These
derivatives allow investigating of the function value
change depending on the change of the value of the
function variable. The interpretation of the structure
function in term of the Boolean function permits to
study the system state change depending on the change
of the failure or repairing of the component.

The computational complexity of the calculation of
IMs based on the system structure function depends on
the system dimension (number of system components).
Authors of papers [5, 7] propose to use the Binary

Decision Diagram (BDD) for the structure function
representation to decrease the computational complexity
of algorithms for reliability analysis. The application of
BDD in importance analysis of system and IMs
calculation have been considered in [5, 8]. Other
approach of this computational complexity decreasing is
the use of parallel procedure [9, 10]. The correlation of
the parallel algorithms and matrix procedures has been
studied in [11]. The transformation of traditional
computational procedures for the calculation of indices
and measures in matrix form is important step in the
design of parallel algorithms. In this paper we consider
and propose new definition of IMs based on the matrix
procedure and algorithm for their calculation based on
new definitions. This transformation of traditional
definition of IMs into matrix form needs the special
representation of structure function by matrix or vector.
For this representation is used the truth vector of
structure function introduced in [11] for definition of
Boolean and Multiple-Valued functions. Some aspects
of the matrix algorithms for calculation of DPBD have
been investigated in [12]. In particular, the matrices to
transform of truth vector of logical function into truth
vector of logical derivative have been proposed. But
author of [12] studied the Logical Differential Calculus
for Multiple-valued logic and didn’t considered
specifics of Boolean logic, that is used in reliability
analysis. The application of parallel algorithm in
importance analysis allows the evaluation of system of
large dimension.

1. The structure function

Let’s a system consist of n components. The
system can have two possible state in point of view of
its availability: working and failure. Every component
state is designated as x; (i = 1,..,n) where the i-th
component working state is interpreted as x; = 1 and
x; =0 indicates the component failure. The set of
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components states (xi, ..., x,,) is named the state vector.
The system availability depends on components states.
Every system component is characterized by the
probability of its state. The probability of the i-th
component failure is g; = Pr{x; = 0}. The probability of
the i-th component working is p; = Pr{x;= 1} =1 — g..
These initial data allow analysis in stationary state that
doesn’t take into account the changes of the system and
its components depending the time [1, 5, 6].

The evaluation of the investigated system needs
forming its mathematical representation. One of
possible mathematical representation is the structure
function, which maps the sets of components states
system state. Taking into account the notations of
components states the structure function ¢(x) of the
system of n components is defined as [5]:

o(x) = o(xy, ..., x,): {0, 1}" — {0, 1}.

The system analysis takes into account next
assumption [13]:

a) the system and its components have two states:
up (working) and down (failed);

b) all system components are relevant to system;

¢) the failure and repair rate of the components are
constant;

d) repaired components are as good as new;

e) the system structure function is monotone non-
decreasing that mean any component failure can not
cause improve of the system working (reliability) [4, 6].

The equation of the structure function agrees with
the Boolean function. It allows us to use mathematical
approach of Boolean algebra for the structure function
investigation. In particular, in papers [2, 5] the approach
of Logical Differential Calculus has been used for
importance analysis of the system represented by the
structure function. In paper the analytical representation
of the structure function in form of formula has been
used. Such representation causes the specific of
algorithms for calculation of importance measures. In
this paper we propose to develop algorithms for
calculation of importance measures based on the matrix
procedures that can be transform into parallel regular
algorithms. The application of parallel algorithms
allows using proposed procedures for calculation of
importance measures for system with large dimension.

The development of matrix procedures assumes
the representation of initial data by matrix or vector.
Therefore, the structure function should be defined by
vector or matrix. In Boolean algebra there is the
representation of Boolean function by truth vector [11].
The truth vector of Boolean function is column of the
truth table of function if the values of the variables are
lexicographically ordered [11, 12].

Therefore, the structure function of any system can
be represented by truth vector of 2" elements un-
ambiguously:

©O) (D (@) @miyT

x=[x"x"x

For example, consider the trivial system of three
components (z = 3) in Fig. 1, a.

The structure function of this system is shown as
truth table is shown in Fig. 1, b.

According to this truth table the truth vector of the
structure function of the considered system

x=[00000111]"

Let us mention the useful property of the truth
vector. The number of the truth vector element in binary
representation corresponds to values of function
variables for this function value if components of the
truth vector is number from 0 to 2"-1 [11]. For example,
consider the truth vector element x*® = 1 of the structure
function of the system in Fig.1. The state vector for this
function value is defined by the transformation of the
parameter { = 5 into binary representation:

i]()z 5= (i], iz, i3)2 = (1, O, 1)

Therefore, the state vector for the 5-th element of
truth vector x of the considered structure function in
Fig. 1 is (x; x, x3) = (1 0 1). It allows us to declare that
the element x*’ = 1 agrees with the structure function
value ¢(1,0,1)=1.

Values of | Function
variables, values,
X1, X2, X3 o(x)
000 0
0 01 0
010 0
X 011 0
P 1 00 0
— * 101 1
X, 110 1
1 11 1
a 0

Fig. 1. Example of system (a)
and its structure function’s truth table (0)

2. Logical Differential Calculus

A Logical Differential Calculus is part of algebra
logic for investigation of dynamic properties of logical
function by logical derivatives. There are different types
of logical derivatives [14, 15]. One of them is logical
derivatives that is often interpreted as logical difference
and defined by equation:

agg_)gx)z go(Ol-,x)@QD(li’x)’

1

where symbol @ is operation XOR and the operand ¢(0;,
x) is the structure function value when the i-th
component is in state 0 (x; = 0), and the second operand
o(1;, x) is the structure function value when the i-th
component is in state 1 (x; = 1).

This type of derivatives allows us to investigate the
result of the system component state change, but this
derivative is not fixed the direction of the state change.
This flaw can be leveled by the use of other type of
logical derivatives that is named Direct Partial Boolean
Derivatives (DPBD) [14].

In analysis of Boolean functions, a DPBD allows
identifying situations in which the change of a Boolean
variable results the change of the value of Boolean
function. In case of reliability analysis, DPBD allows
investigation the influence of a structure function variable
(=component state) change on a function value change
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(=system state). Therefore, a DPBD of the structure
function permits indicating components states (state
vectors) for which the change of one component state
causes a change of the system state (availability) [2].
DPBD can be used to analyze how a specific
change of component state (from 0 to 1 or from 1 to 0)
affects the system functionality (from 0 to 1 or from 1
to 0). This derivative for the system structure function
change from j to ; with respect to variable x; change

from a to a is defined as:

op(j—7)

Ox; (a —>57) ={§D(al-,x) H]}/\{go(ﬁl-,x)ej} ,

where @(a;, X) = @(x1, X25. .., Xi1, Ay Xit1y- -5 Xn),

a,j € {0, 1};

<> is the symbol of equivalence operator (logical bi-
conditional);

A denotes Boolean operation AND,;

a is a negation of the argument a.

The matrix interpretation of DPBD can be
introduced for the truth vector of DPBD that is
calculated based on the truth vector of the structure
function. According to the definition of the DPBD

op(j—Jj)/ox;(a—a) the truth vector of this
derivative is calculated as [12]:

ox(j—7J : -
(J J_) _ (P(z,a) 2 (X)),(P(z,a) - (x)),
0ox; (a - a) : /
where x is the truth vector of the structure function;
2s(x) is the vector literal calculated according to:
Agx0) = A, ([ x V. x0Ty =
= [sex@ sex s(—)x(zn'l))]T, forse{j, j};
P(”)
2"1%2" of the variable x; for [ € {a, a } that is formed as:

PY'=M,, ®[l<0 [o1eM

is differentiation matrix of the dimension

n—i 2

matrices M,, and M
dimension 2”'x2"" and 2"'x2"" accordantly.
The vector literals A(x) and /l;(x) indicate the

are diagonal matrices of the

n—i

variables values (state vectors) for which the structure
function has value j and j (the system state j and ;)
accordantly. The matrices P““ and P“” indicate the
variables values (state vectors) for which value x; is a
and a .

For example, compute the truth vector of the

DPBD  with  respect to the variable x;
ox(1 - 0)/éx,(1—>0) for the structure function of the

system shown in Fig.1. The truth vector of this system
structure function is x=[00000 1 1 1]". According to
the equation for the calculation of truth vector of DPBD
we obtain:

ox(1—0)

or,(1>0) (P 2,00)- (P2 2,(x),

where vector literals are 4;(x) =[0 0000 1 1 1]" and
J(X)=[11111000]",

P =M, ®[0 1]®M, =
[0 01 0 0 0 0 0]
10 1000010000
£ e o 3 |
0 1 01/]10 00 000T10
0000000 1]

P =M, ®[ 0]®M, =
(1 00 00 0 0 0]
10 1 0//01 000000

= 1 o]® =

0 1 01/]/0 0001000
0000010 0
011 0
ox(1—0) o/ |1| [0
L= (P A,(0)- (P02, 0)=| | (=] -
6x2(1—>0)( ‘())( °()) 1 |1] |1
1110 0

The truth vector of DPBD ox(1 — 0)/dx,(1— 0)

doesn’t depend on the variable x, and has only one non-
zero value that agree with the variables values: x; = 1
and x3 = 0. The state vector (x; x3) = (1 0) allows us to
declare only one situation of the system failure
depending the fault of the second component. It is
possible if the first component is in the working state
and the third component was fault before the breakdown
of the second component.

The truth vectors of other DPBDs of this system
for analysis of its failure can be calculated similar.
According to these derivatives, the considered system
fails depending the fault of the second component in
case if the third component was not functioning and the
first component has been working. The fault of the third
component cause the system failure in two situations:
the first component should be in the working state and
the second component can be fault or working.

Table I — The truth vectors of DPBDs for the system
failure analysis (the system is shown in Fig. 1)

Vj;‘ﬁ‘e’les ox(1-0) ox(1-0) ox(1-0)
e o0 | a0 | an(150)
000 - - -
001 — — 0
010 — 0 —
011 — 0 0
100 0 — —
101 0 — 1
110 0 1 —
111 1 0 1

3. Importance Measures

One of the first of Importance Measures (IMs) has
been introduced by Birnbaum [16]. These measures allow
evaluating the influence of the fixed system component
changes (failure or restore) to the system failure or
working. In paper [2] new DPBDs-based method for
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calculation of IMs has been developed. The well-known
IM as Birnbaum Importance (Bl), Structure Importance
(SI) and Criticality Importance (CI) have been defined in
terms of DPBD. Let us summarize these definitions of IMs
(Table 2) for the system failure based on DPBDs.
According to the definition of SI in Table 2 this
measure can be considered as relative number of
situations in which a given component is critical for the
system activity. It can be defined as proportion of
system state for which the fault of the fixed component
causes the system failure in space of possible system
states. The number of such caused system state can be
defined by DPBD 0 ¢(1—0)/0x;(1—0) and nominated

as p”". The SI of the i-th component is defined as [2]:
SI; = pl(_1—>0)/2n—1 ’
where 2"-1 is a size of the DPBD.

Table 2 — Importance Measures Definitions

Importance

Meanin
Measure &

The SI concentrates only on the topological
structure of the system. It is defined as the
probability of the system failure depending
on the failure of the component breakdown
based on the topological specific of the
system

The BI of a given component is defined as
BI the probability that the component is
critical for the system work.

The CI of a given component is calculated
as the probability that the system failure has
been caused by the component failure,
given that the system is failed.

SI

CI

The BI of component i defines as the probability
that the i-th system component is critical for system
failure. It is probability of the system failure if the i-th
system component was fault. This probability can be
defined as the probability of all critical states. These
states is computed by the DPBD 0¢(1—0)/0x,(1—0) [2]:

BI; = Pr{dp(1—0)/x;(150) & 1}

One very often used IM is CI. This measure is
defined similar to the BI, but take into account of the
probability of the i-th component fault [1]. Therefore,
this measure can be calculated based on DPBD to:

Cl; = Bl;(q;/U).

where ¢; is the probability of the i-th component fault
and U is the system unavailability that is calculated
based on the structure function as:

U=Pr{p(x)=0}.

The considered IMs are computed based on the
DPBD. The definition of the structure function by truth
vector allows us to compute these measures based on
the matrix procedures.

4. Matrix procedures for Importance
Measures calculation

The SI of the i-th component can be computed by
the matrix procedure as:

SI; = 0.9 (0x(j > 7)/ox; (a > @)) /2"
where O is number of non-zero values of the truth
vector of DPBD 6x( j— ]_)/ ox(a—a).

The BI of the i-th component is defined as the

probability of all critical states that are indicated by
non-zero values of the truth vector of DPBD:

BI, = Pr{ox(1 - 0)/x,(1— 0) <> 1}.

The CI of the i-th component is calculated based
on BI. A matrix procedure can be transform in parallel
procedure according to [12].

To illustrate the analysis of system based on SI, BI
and CI using DPBDs consider the system in Fig. 1 and
compute these measures for all system components.
Values of IMs for this system are computed in Table 3.
According to these IMs, the first component has the most
influence on the system failure from point of view of the
system structure, because the values of the SI, BI are
greatest for this component. The CI is maximal for the
second and third components and, therefore, it indicates
the first component as non-important taking into account
the probability of failure of this component (it is minimal
for this component, i.e. g; = (1 —p;) = 0.10).

Table 3 — IMs for the system in Fig.1

Component X X X3

Probability of component state, p; | 0.90 | 0.70 | 0.65
SI; 0.75 1 0.25 ] 0.25
BI, 0.90 | 0.32 | 0.27
CI, 0.46 | 0.49 | 0.49

So, DPBDs are one of possible mathematical
approaches that can be used in importance analysis, and
they allow us to calculate all often used IMs (Table 2).
Mathematical background of its application for the
definition of IM has been considered in papers [2, 5]. In
this paper new algorithm for the calculation of DPBD
based on a parallel procedure is developed.

Conclusion

In this paper the new algorithm misr proposed for
the calculation of IMs based on the matrix procedures.
This algorithm is based on the use of the DPBDs. The
computational complexity of the proposed algorithm is
less in comparison with algorithm based on the typical
analytical calculation (Fig. 2).

1200

1000 — Analitical
800
£ Parallel
600
Ua00
g
200

04 ==
! 2 > Nufuber osfcomgonen&, n ® ’ 10

Fig. 2. Computation time for calculation of DPBDs
based on analytical and parallel procedures

The proposed algorithm for the calculation of IMs
based on the parallel procedures can be used in many
practical applications.
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Martpuysi npouexypu
JUIsE 00YHCJICHHS BAsKIHBICHIX OIHOK KOMIIOHEHTIB CHCTEMH

I1. Cemauek, A. ®opray, O. 3aiinesa

AHoTanisi. HaxiiiHICTE/HOCTYIHICTS CHCTEMH € CKJIQJHUM OaraTOrpaHHUM HOHSTTSM, SKa OLIHIOETHCS Ha OCHOBI
YUCICHHUX IIOKa3HUKIB 1 iHAeKciB. ICHYIOTb pi3HI MeTOAM PO3paxyHKy LMX IOKAa3HHMKIB B aHali3i HagiiHocti. OnHuMu 3
HaHOLIBII YaCTO BUKOPUCTOBYBAHUX NMOKA3HUKIB € MOKA3HUKAMU OLIHKH Ba)KJIMBOCTI KOMIIOHEHTIB CHUCTEMH, SIKi JI03BOJIAIOTH
OLLIHUTH BIUIUB OJHOr0 a0 JIEKIJIbKOX KOMIIOHEHTIB CHUCTeMH Ha ii HaailHiCTh/HocTynHicTh. ChOroJiHi BUKOPUCTOBYIOTBCS Mipu
Ba)KJIMBOCTI, 1100 BpaxyBaTH Pi3HI aClEKTH BIUIMBY €JIE€MEHTIB CUCTeMH Ha ii BiMOBY ab0 npane3aTHicTb. AHaIII3 BaXJIMBOCTI
€JIEMEHTIB BUKOPHCTOBYETBCS IIPH INPOEKTYBaHHI, MIarHOCTHII Ta ONTHMIi3amii cucreMu. Y HaHii crarTi po3poOieHi HOBI
ITOPUTMH PO3PaxXyHKY JESIKHUX OLIHOK BaXXJIMBOCTI KOMIIOHEHTIB CHCTEMH Ha OCHOBI MAaTPMYHHX Hpoueayp. Meroro naHoi
pobOTH € po3poOKa HOBOrO AJITOPUTMY UL PO3PaxXyHKY IOKa3HUKIB BaXKIIMBOCTI CHCTEMH HAa OCHOBI MaTPUYHHUX NPOLENYD, AKi
MOXXYTb OyTH HEpPETBOPEHI B MapaJielibHi Mporeaypu/anroputmu. Lli anroputmu po3poOiieHi Ha OCHOBI 3aCTOCYBaHHS JIOT4HOTO
i epeHnianbHOro 00uUCIIeHHs OyIeBol JIOTIKYU U1 aHaJli3y BaXKIIMBOCTI CUCTEMH. 3aCTOCYBAHHS NapajlelbHUX AITOPUTMIB B
aHaji3l Ba)KIMBOCTI JIO3BOJSIE OIUHIOBATH HAaJiMHICTH CHCTEMH BelUKoi po3MipHocTi. CrenudigyHolo 0CcOONUBICTIO
3aIPONIOHOBAHUX MATPUYHMX IPOLEIYp Ul PO3PaXyHKY IOKa3HHMKIB BajKJIMBOCTI € BUKOPHCTAHHS CTPYKTYPHOI GYHKIIT Juis
MaTeMaTHYHOrO IMOZaHHA JociiKyBaHOi cucreMu. Ll QyHKuis BU3Hauae OfHO3HAUHE CIIIBBIJHOIICHHS UL BCIX MOMUIMBHUX
MOEJHAHb CTaHIB KOMIIOHEHTIB CHCTEMH 1 HajiiHicTio/mocTynHicTio cucreMu. CTpyKTypHa (YHKIIS B L[bOMY BHIAIKY
BU3HAUYAETHCA SIK BEKTOP ICTMHHOCTI, SIKMH BHUKOPHCTOBYETbCS B MATPHYHUX HEPeTBOPEHHsX. Bekrop icruHHOCTI Oynesoi
GbyHKUii sBise coOO0 CTOBIELb TAONUI ICTUHHOCTI Ul 3HAa4€Hb 3MIHHMX YIOPSIKOBAHHUX B JICKCHUKOIpahiuHOMY HOPSIKY.
Bynp-sika crpykTypHa (QyHKIISI CHCTeMH MOXKe OyTH OJHO3HAYHO IIPEJCTaBJICHAa BEKTOPOM iCTHHHOCTI, SIKM CKiIaaeTsest 3 2"
€JIEMEHTIB.

Karo4doBi cioBa: OLIHKM BajJIMBOCTI KOMIIOHEHTIB; CTPYKTypHa (yHKLif; joriude audepeHiianbHe YUCICHHS;
JIOT14HI CIIPSIMOBAHI IOXiHI.
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