IHdbopmMauinHi TexHonorii

UDC 378.112: 004.9

doi: 10.26906/SUNZ.2019.2.055

Anoushirvan Rashidinia', S. Gavrilenko', M. Pochebut®, O. Sytnikova®

"National Technical University “KPI”, Kharkiv, Ukraine
*Kharkiv National University of Radioelektronics, Kharkiv, Ukraine

SOFTWARE SECURITY OVERVIEW

The article analyzes the main threats and problems of software protection. Methods for protecting information, their
advantages and disadvantages are considered, and the possibility of using existing tools to protect software is studied. The
possibility of improving and using a number of software protection methods against active fraud attacks was brought. Type
of attacks exists and why protection is necessary was specified. Furthermore, we discussed several states of the art
protection techniques which can be used in software to protect against analysis and tampering attacks. Analyzed such
methods: Client-Server Solutions, Code Encryption, Code Diversity, Code Obfuscation, White-Box Cryptography, Tamper
Resistant Software, Software Guards, Oblivious Hashing. Although we considered all these possible techniques separately,

it is possible to combine these techniques into one solution.

Keywords: software protection methods, type of attacks, threats for software.

Introduction

With the increase of software flaws, there is a rise
in the demand for security embedding to achieve the
goal of secure software development in a more efficient
manner. Any software is intended to recognize, prevent,
stop and fix the damage caused by others on your
computer or network can be called security software.

Problems of Software Protection. The main
problem in the context of software security appears
when software is given to remote hosts. Once this is
done, the owner practically loses all control over the
product. And from that moment on malicious users or
malicious software [1, 2] can harm and intervene the
local software. Chow et al. called these type of attacks
white-box attacks [3, 4] because in this model the
attacker has full access to the system. This means that
the malicious user or program can execute the program,
observe the memory, processor, and registers, and
change bytes during execution, etc. Therefore,
protection against analysis and tampering of code is
necessary.

Attacks, on software. Two common attacks on
software are tampering and reverse engineering.
Tampering is attacks that aim to change the
functionality of the software while reverse-engineering
techniques try to analyze the software in order to
understand its behavior.

Software attacks can be either static or dynamic.
In a white box environment, all these techniques can be
used. Due to that, software security requires
improvement. The only things that might keep an
attacker using these techniques are time and resource
constraints. This means that if it takes a lot of memory
and computing power to analyze a certain piece of code,
this code has higher practical security to resist attacks.

Software Protection. The software can be
protected in many ways. It can depend on trusted
hardware, which is hardware based protection. Or it can
rely on its own implementation and the underlying
software, which is called software-based protection.

Some techniques are the combination of both. The main
benefit of software-based protection techniques is the
low cost and compatibility with existing systems. In this
Study, our main focus is on software-based protection.

The quality of security in an application consists of
the required immunity of the application against reverse
engineering (analyze) or tampering attacks. Here, we
specify this level in more detail:

* Vulnerability: Open systems, such as a
desktop, a notebook or a mobile device are much more
vulnerable to attacks than closed systems, such as
servers behind a firewall.

* Value of content: Depending on the kind of
application and its content (code and/or data) varies the
type of attacks and the number of methods and
resources used for attacking the software.

« Content lifetime: Content or properties with a
longer lifetime require a higher level of security.

« Security life cycle: The security of an
application can be designed to be periodically
renewable. Systems without upgrade possibilities need a
higher security level than systems with regular
upgrades.

- Sensitivity for global attacks: Global attacks
are attacks affecting the whole system. This is
achievable when the code includes a ‘global secret’, for
example, a constant key or data at a fixed location for
each user. In this case, the attacker can develop an
automated attack and spread it through the Internet.

The actual security level is always a
compromisation between the need for security and the
way to implement this security.

Software Security Techniques

In the following sections we try to summarize
techniques to protect code against malicious users and
programs. This can be protection against either analysis
or either tampering.

Client-Server Solutions: One of the earliest
methods to protect critical software was to keep it
running at the owner side instead of the user side.

© Anoushirvan Rashidinia, Gavrilenko S., Pochebut M., Sytnikova O., 2019 55

Cucmemu ynpaeninns, nagizayii ma 36'a3xy, 2019, eunyck 2(54)

ISSN 2073-7394

Critical software was not disseminated to unstable hosts
but maintained on a well-protected server. The
protection of the server depends on as well as network,
hardware, and software security (the operating system).
The code itself is often not guarded by any other
techniques. By this setup, the services are distributed
not the software itself. From an attacker’s perspective,
the server will be seen as a black box that can be
reached by sending queries and receiving replies.

The main drawback of client-server systems is that
the server or the network bandwidth becomes a
bottleneck, causing services to be temporarily
unavailable. Although this can be resolved by upgrading
network infrastructure, a new model has been proposed,
called partial client-server. In this design, the sensitive
code is divided into a critical and a non-critical part.
The critical part needs to be protected and is, therefore,
run at the server side, the non-critical part is distributed
and is run at the client side. The benefit is that the load
of the service is now better spread over the clients and
the server. The code running at the server side can also
be substantially smaller, although some extra overhead
is needed to support communication between the client
part and the server part. This directly shows the main
problem. At first sight this model seems to unload the
server, nevertheless, in practice, the client part and the
server part have a highly interactive communication so
that once more the bandwidth becomes a bottleneck.
Although client-server was one of the first and still
commonly used methods to preserve software from
attacks, it actually tackles the problem by protecting the
server and not the software running on it.

Code signing: Some languages (for example C)
have no security mechanisms in line that check code
before execution, therefore, these languages, in
particular, are very sensitive to tampering attacks
changing the program in a way that its computations
cannot be trusted any longer.

To bypass the tampering of a program, its code
needs to be protected during transmission and storage.
Each time the program executes it should check and
verify its integrity to detect tampering. Signing
techniques [5] are most suitable for this type of
checking. The owner can sign the software and the user
can validate the signature appended to the software.
This is already the case with some Windows drivers that
are signed by Microsoft and verified by the user at
installation time [6]. One could extend and automate
this process so that the signature is verified at each
execution of the program. For example, software guards
[7] do not sign the code with a key but verify a
calculated checksum with a stored one.

The downside is that without extra security
measures in place the code and the signature are still
vulnerable to intervention. If the signature scheme is
known, one could simply change the code to its own
needs, recompute the signature and restore the old
signature by the new one. The verification module
would then just verify the new signature and would not
assume any tampering. The main reason for this
vulnerability is that the signature and the verification
module are not signed themselves.

Code Encryption: Additional to code signing,
designers can also encrypt code during transmission and
storage [8—11]. Tools such as cryptographic wrappers
encrypt the code of a software application in order to
avoid attackers gaining access to the software. It
protects software against static reverse-engineering and
tampering attacks. For example, an attacker cannot see
the code and therefore not make any structured changes
when the code is stored on a disk or transmitted over a
network. Note that an attacker can always flip random
bits and what will result in a corrupted application.

During program execution parts of the code will be
decrypted ‘on the fly’ with a secret key. Unfortunately,
at that moment the code appears, in memory for
example, so that it is able to intercept. The intercepted
code can then be debugged, decompiled, etc. This is the
main vulnerability of this technique and furthermore
makes the presence of a secret key this technique less
suitable for distribution.

Even if the code or the data remains encrypted [12],
an attacker can recognize what happens during runtime if
bits in the encrypted code or data or flipped. This
technique is also known as fault analysis [13]. Encrypted
and polymorphic viruses [14-16] perform similar
techniques. An encrypted virus encrypts at each new
generation the body with a unique key. This is essential to
avoid detection through string analysis searching for
specific byte signatures. In front of the body, a decryption
routine is added to secure that the virus body gets
decrypted on the fly during execution. Nonetheless, if the
encryption routine remains unchanged, scanning for
signatures is still possible. For that, encrypted viruses
evolved and added a mutation engine ensuring that for
each new generation also the decryption routine has
changed. This kind of viruses is therefore called
polymorphic viruses. Note that the decryption routine
can, of course, be protected with other analysis tackling
techniques. Once a virus is decrypted and stored in
memory, it will choose a new key, encrypt the new
variant and add a modified decryption routine.

Code Diversity: The last month's viruses and
worms [2] become a hot topic in the media. Triggered
by these virus outbreaks discussions often mention the
choice of operating system. This actually refers to the
problem why viruses spread so successful. One reason
could be that the software community is evolving to a
‘monotone’ distribution, meaning that most people use
the same type of operation systems, containing the same
type of bugs. This is one of the reasons why viruses,
whom most of the time try to exploit only one bug at a
time, are so successful.

Without arguing about safe operating system
design and implementation, we can state that just as in
nature diversity is stronger to resist threats such as
viruses and worms. It also offers extra protection
against global attacks because once software images are
diversified, a common attack might be a lot harder to set
up and only parts of the software community might be
vulnerable.

Forrest et al. sketch the analogy between diversity
in computer systems and diversity in biological systems
[17]. Guided by this idea computer code could be

56

Ingpopmayiini mexnonoziv

randomized, without changing the functionality or
losing much user-friendliness or performance. Their
paper presents some preliminary results on randomizing
stack layouts by increasing certain slots with a random
time 8 bytes. Such a simple modification could harden a
program instance better against standardized buffer
overflow attacks.

Another technique to battle buffer overflow
attacks, called address obfuscation, is also based on the
idea of code diversity [18]. This technique randomizes
the code and data sections on the stack by randomizing
all the base and start addresses, locations of routines and
static data and introducing gaps between objects. More
on buffer overflow protection techniques can be found
in [19, 20].

Code Obfuscation: Object-oriented programming
is used everywhere because it offers various advantages
to read, adapt or extend the code. However, this way of
programming in modules leaves many traces into an
executable and reverse-engineers will exploit these
traces as good as possible to reconstruct the original
source code [21]. Therefore, programmers developed
several techniques to maximally obscure the internals of
a program so that analysis becomes very difficult. The
most common technique to do is code obfuscation. This
technique applies one or more transformations to code
that make the code more resistant to analysis and
tampering but preserve its functionality. Obfuscated
code can then be distributed to untrussed hosts without
risking to be reverse engineered soon.

Code obfuscation is used more and more due to the
need for embedded software protection. It is originally
designed for languages such as Java because Java
bytecode is very sensitive for code analysis. This means
it is easy to recover original Java source files out of Java
bytecode files. Many Java obfuscators [22, 23] (and
deobfuscators) have therefore been designed. Also .NET
obfuscators [24] are becoming common on the Internet.
Nevertheless, C/C++ obfuscators are very rare and
difficult to find. Although, C and C++ are very common
and widely used languages.

Wroblewski [25] and Mambo et al. [26] propose
code obfuscation on an instruction level, e.g. Assembly
code. This has certain advantages. First, the code does
not have to be compiled anymore, which facilitates
integrity checks and hashing of code. This is one of the
reasons why software guards [7, 27] are implemented
on an assembly level. Second, transforming on an
instruction level instead of on a high level is often
preferred for watermarking [28].

White-Box Cryptography: In past few years,
attacks have been performed to extract key information
out of RSA and even DES implementations. Boneh,
Demillo, and Lipton have come up with a method for
RSA [25], Biham and Shamir have continued this
method for DES [13]. These new attacks focus on the
extraction of the secret key embedded in a
cryptographic implementation and are a new threat in
security.

In August 2002, Chow et al. defined this new
thread model, the white-box attack context or malicious
host attack context as follows:

« Full-privileged attack software shares a host
with cryptographic software, having complete access to
the implementation of algorithms;

« Dynamic execution (with
cryptographic keys) can be observed;

« Internal algorithm details
visible and alterable at will.

The attacker’s objective is to extract the
cryptographic key, e.g. for use on a standard
implementation of the same algorithm on a different
platform. Obfuscation alone does not help against this
threat, because obfuscated cryptographic algorithms
store parts of the secret key in the malicious hosts’
memory and can thus be extracted.

Chow et al. proposed a new technique to secure
cryptographic algorithms against white-box attacks,
called white-box cryptography. This technique is based
on the idea that an encryption function Ex with key K
can be replaced by an equivalent function
Eyx = G.E,.F~' in which F is an input encoding and G is
an output encoding. The strength of this substitution is
that none of the implementation components computes
the function Ex for a key K. An attacker would first
have to analyze Ex and isolate the encoding functions F’
and G before he can analyze Ex to find the secret key K.

Due to the introduced functions F and G, it is
possible to inject sufficient ‘randomness’ in the
implementation so that finding and extracting the key is
becoming hard. So far the only practical disadvantages
of white-box cryptography are the code size and the
extra execution time.

Tamper Resistant Software: Tamper resistant
software requires very skilled programmers working on
a binary or source code level to embed ‘booby traps’ for
tamper detection in software. A good tamper resistant
code always has a dual function. First, the code needs to
identify undesired changes and second the program
needs to fail in case of tampering.

Aucsmith came up with one of the first papers on
tamper-resistant software (TRS) [30]. He proposed a
tamper-resistant software architecture which bundles
many of the previously mentioned techniques in order to
realize a tamper-resistant software implementation. His
technique is a combination of four principles:

instantiated

are completely

1. Disperse secrets in both time and space.
2. Obfuscation of interleaved operations.
3. Installation unique code.

4. Interlocking trust.

These principles have also been applied as a base
for ideas such as code diversity, software guards, code
obfuscation, etc. Aucsmith’s architecture consists of two
parts namely integrity verification kernels (IVKs) and
an interlocking trust mechanism. An IVK is a small,
armored section of code to embed in a larger program.
The IVK has mainly two functions:

1. Verifying the integrity of code segments of
programs.

2. Communicating with other IVKs in order to
accomplish these functions securely.

It is organized in cells, which are decrypted at
runtime and thus define the smallest level of granularity

57

Cucmemu ynpaeninns, nagizayii ma 36'a3xy, 2019, eunyck 2(54)

ISSN 2073-7394

which is ever exposed unencrypted. The encryption of
cells is made in a pseudo-random order based on
generator function. Moreover, each IVK contains one or
more keys. A secret key to sign and a public key to
verify signatures made on other code segments.

The second part of the TRS architecture is the
interlocking trust mechanism. It consists out of IVKs, an
integrity verification protocol, and a system integrity
program. These three parts operate together in an
interlocking trust mechanism based on mutual integrity
verification [30].

Software Guards: Chang et al. defined small
pieces code that checksum code fragments [7].
Measuring an integrity checksum can be done by for
example CRC [31]. Using a complex, nested network,
these guards are able to verify each other’s

Code plus the program code itself and repair it if
necessary. In this way, tampering of the program is
extended to detecting the complete agent network, this
means identifying, localizing and eliminating the whole
network of guards and then tapering the actual program
code itself. A guards graph and its placement in a
control flow graph (CFG).

The drawback of this method of software
protection is that it is hard to automate and thus depends
on one's programming skills. As a result, the support
cost will be very high. Moreover, this technique does
not offer any protection against dynamic analysis
attacks.

The new study from Horne et al. attempts to
extend and automate this technique [27] to enhance
tamper resistance of programs. Their techniques are
based on testers and correctors. The testers, code in
Assembly, are included at the source code level, while

the correctors are included in the object code. The
values of the correctors and some watermark values are
computed at installation time, ending in a watermarked,
self-checking, fully functional program [27, 32, 33].

Oblivious Hashing: As a response to the idea of
software guards checking only static code, Chen et al.
insinuated an oblivious hashing (OH), a method that
allows certain computation of a hash value of the actual
execution [34, 35]. The approach is to hash the
execution trace of a piece of code, enabling to confirm
the run-time behavior of the software. Hashing
instructions are mixed with the original code and take
results of previous instructions and apply them to hash
values stored in memory. Assignment results and
control flow results achieve most of the dynamic
behavior of a program, for that, it is adequate to hash
only assignments and control flows.

Oblivious hashing has two important application
domains. First, it is able to be used to give local
software tamper resistance and second, it has the
capacity to be used for remote code authentication. In a
white box model, local software should render its own
security so that remote code authentication is not an
option [35].

Conclusion

In this study, we went through the problem of
software protection. Type of attacks exists and why
protection is necessary was specified. Furthermore, we
discussed several states of the art protection techniques
which can be used in software to protect against
analysis and tampering attacks. Although we considered
all these possible techniques separately, it is possible to
combine these techniques into one solution.

REFERENCES

—_

Intro to spyware. http://www.spywareguide.com/txt_intro.php.

2. R. E. Mahan. Malicious Software, http: /www.tricity.wsu.edu/htmls/cs427/public_html/ Ch%2013%20Malicious% 20Software.pdf.

3. H. J. S. Chow, P. Eisen and P. van Oorschot. A White-Box DES Implementation for DRM Applications. In Proceedings of
2nd work ACM Workshop on Digital Rights Management (DRM 2002), November 18 2002.

4. H. J. S. Chow, P. Eisen and P. van Oorschot. White-Box Cryptography and an AES Implementation. In Proceedings of the
Ninth Workshop on Selected Areas in Cryptography (SAC 2002), 2002.

5. A. Menez, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, Inc., 1997.

6. Microsoft Corporation. Digital signature benefits for windows users, 2002.

7. H. Chang and M. J. Atallah. Protecting software codes by guards. ACM Workshop on Digital Rights Managment (DRM

2001), LNCS 2320:160- 175, 2001.

8. Amin Salih M., Yuvaraj D., Sivaram M., Porkodi V. Detection And Removal Of Black Hole Attack In Mobile Ad Hoc
Networks Using Grp Protocol. International Journal of Advanced Research in Computer Science. Vol. 9, No 6. P. 1-6, DOI:

http://dx.doi.org/10.26483/ijarcs.v9i6.6335

9. Saravanan S., Hailu M., Gouse G.M., Lavanya M., Vijaysai R. Optimized Secure Scan Flip Flop to Thwart Side Channel
Attack in Crypto-Chip. International Conference on Advances of Science and Technology, ICAST 2018. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Vol 274. Springer, Cham. DOI:

https://doi.org/10.1007/978-3-030-15357-1 34

10. Porkodi V., Sivaram M., Mohammed A.S., Manikandan V. Survey on White-Box Attacks and Solutions. Asian Journal of

Computer Science and Technology. Vol. 7, Is. 3. pp. 28-32.

11. Manikandan V, Porkodi V, Mohammed AS, Sivaram M, “Privacy Preserving Data Mining Using Threshold Based Fuzzy

cmeans Clustering”, ICTACT Journal
10.21917/ijs¢.2018.0252

on Soft Computing, Volume 9,

Issue 1, 2018, pp.1813-1816. DOI:

12. T. Sander and C. F. Tschudin. On Software Protection via Function Hiding. In Proceedings of the Second Workshop on

Information Hiding, LNCS 1525:111-123, 1998.

13. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. Advances in Cryptology: Crypto 97,

LNCS 1294:513— 525, 1997.

14. Symantic. Understanding and Managing Polymorphic Viruses. http://www.symantec.com/avcenter/reference/striker.pdf.
15. P. Szor and P. Ferrie. Hunting for Metamorphic, September 2001. http://www.peterszor.com/metamorp.pdf.
16. T. Yetiser. Polymorphic Viruses. http://vx.netlux.org/texts/html/polymorf.html.

58

Ingpopmayiini mexnonoziv

17. S. Forrest, A. Somayaji, and D. H. Ackley. Building Diverse Computer Systems. In Proceedings of the Sixth Workshop on
Hot Topics in Operating Systems, pages 67—72, 1997.

18. D. C. D. Sandeep Bhatkar and R. Sekar. Address obfuscation: an efficient approach to combat a broad range of memory error
exploits. In Proceedings of the 12th USENIX Security Symposium, pages 105-120, August 2003.

19. C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks and Defenses for the Vulnerability of the
Decade. http://www.immunix.org/StackGuard/discex00.pdf.

20.I. Simon. A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks, January 2000.
http://www.mcs.csuhayward.edu/~simon/security/boflo.html

21. C. Cifuentes and K. Gough. Decompiling of binary programs. Software — Practice & Experience, 25(7):811-829, 1995.

22. Z. KlassMaster. The second generation java obfuscator. http://www.zelix.com/.

23. P. Solutions. Dasho - the premier java obfuscator and efficiency enhancing tool.
http://www.preemptive.com/products/dasho/.
24.P. Solutions. Dotfuscator - the premier .NET obfuscator and efficiency enhancing tool.

http://www.preemptive.com/products/dotfuscator;/.

25. G. Wroblewski. General Method of Program Code Obfuscation. PhD thesis, Wroclaw University of Technology, Institute of
Engineering Cybernetics, 2002.

26. M. Mambo, T. Murayama, and E. Okamoto. A tentative approach to constructing tamper-resistant software. In Proceedings
of New Security Paradigms Workshop, pages 23-33, 1997.

27. B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic SelfChecking Techniques for Improved Tamper
Resistance. In Proceedings of Workshop on Security and Privacy in Digital Rights Management 2001, pages 141-159, 2001.

28.J. P. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater. Robust object watermarking: Application to code. In Information
Hiding, pages 368— 378, 1999.

29. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Eliminating Errors in Cryptographic Computations. Journal
of Cryptology: the journal of the International Association for Cryptologic Research, 14(2):101-119, 2001.

30. D. Aucsmith. Tamper resistant software: an implementation. Information Hiding, 1174:317-333, 1996.

31. R. N. Williams. Welcome to the Sci.Electronics. A painless guide to CRC error detection algorithms, 1993.
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

32. Yogesh Awasthi, R P Agarwal, B K Sharma, "Intellectual property right protection of browser based software through
watermarking technique", International Journal of Computer Applications, vol. 97, no. 12, 2014, pp. 32-36.

33. Yogesh Awasthi, R P Agarwal, B K Sharma, "Two Phase Watermarking for Security in Database", International Journal of
Computing, vol. 4, no. 4, 2014, pp. 821-824.

34. Kuchuk G.A. An Approach To Development Of Complex Metric For Multiservice Network Security Assessment /
G.A. Kuchuk, A.A. Kovalenko, A.A. Mozhaev // Statistical Methods Of Signal and Data Processing (SMSDP — 2010): Proc.
Int. Conf., October 13-14, 2010.— Kiev: NAU, RED, IEEE Ukraine section joint SP, 2010. — P. 158 — 160.

35. Y. Chen, R. Venkatesan, M. Cary, R. Pang, and S. S. an Mariusz Jakubowski. Oblivious hashing: a stealthy software integrity
verification primitive. In Information Hiding, 2002.

Penenzent: 1-p TexH. Hayk, mpod. C. I'. CemeHoB,

HartionanbHuiA TeXHIYHUI yHIBEPCUTET «XapKiBCbKUHN MOJNITEXHIYHUH IHCTUTYT», XapKiB
Received (Hapniiiua) 04.02.2019

Accepted for publication (ITpuitasita mo apyky) 21.03.2019

O0630p nporpaMMHoOro odecrneyeHus: 6e301aCHOCTH
AnoymmBaH Pammpnina, C. 1O. I'aBpuenko, M. B. [Toue6yt, O. A. CutHHKOBa

B crarbe mpoBezeH aHANU3 OCHOBHBIX Yrpo3 M MpoOJIeM 3aIlUThl IPOrpaMMHOr0 odecriedeHusl. PaccMOTpeHbI MeTOmIb!
3amuThl MHGOPMAIMK, UX JOCTOMHCTBA M HEJOCTaTKH, a TaKKe IMPOBEICHBI HCCIIEJOBAHMS BO3MOXKXHOCTH HCIOJIB30BAaHHS
CYIIECTBYIOIMX CPEICTB JUIS 3allUThl IporpaMMmHOro obecredenus. [loka3aHa BO3MOXKHOCTH YCOBEpIIEHCTBOBAHHUS W
HCIIONB30BAaHMS psila METOZOB 3alUTHl MPOrpaMMHOI0 OOECIIEUYEeHHs OT aKTHUBHBIX arak M (anbcudukanmm. s kaxmoro
CYILECTBYIOIIETO THIIA aTaKd yKa3aHbl HeoOXOIWMBbIE Mepbl 3ammThl. Kpome TOro, paccMOTpeHBI HECKOIBKO COBPEMEHHBIX
METOJIOB 3alllUTHI, KOTOPbIE MOXKHO HCIIONB30BaTh B HPOrPAMMHOM OOECIIEUEHHMH ISl 3alUTHl OT aTak aHaiW3a ¥ B3JIOMa
nporpamMMel. [IpoaHanM3MpoBaHbl TakWe METOMBI: KIMEHT-CEPBEPHBIE pelIeHHs, MHU(pPOBaHHE KO/A, pPa3HECEHHE Koja,
o0dyckamus kona, kpunrtorpapus White-Box, mporpaMmmHuoe obecriedeHue [Uist 3alUTHl OT HECAHKIIMOHHPOBAHHOTO JOCTYIIA,
3alMTa MPOrPaMMHOTO OOECIEeUYEHHs, OCTaTOYHOE XCHIMPOBaHHE. XOTS BCE ITH METOABI PAaCCMOTPEHBI OTIEIBHO, MOXHO
00BEANHNTH UX JUISI COBMECTHOT'O MCIOIB30BAHMS IS TPOrPaMMHOr0 obecrieueHns: 6e30acHOCTH.

KaoueBble €J0Ba: METOBI 3aIIUTHI IIPOrPaAMMHOT0 00ECIIEUEHH S, THI aTaK, YIPO3bl IPOrPaMMHOMY 00ECIICUEHHIO.

Orasg nporpaMHoro 3aéesnevyeHHs 0e3NeKH
AnoymmBaH Pammpnina, C. 1O. N'aBpuenko, M. B. IToueGyt, O. O. CutHikoBa

VY crarTi NpoBeAEHO aHali3 OCHOBHHMX 3arpo3 i HpoOlieM 3aXHCTy NporpaMHoro 3abesneueHHsA. Po3risHyro meronu
JUISL 3aXHCTy IporpaMHoro 3a0esnedeHHs. JloBelleHa MOXIIMBICTD YJOCKOHAJIEHHS | BUKOPHCTAHHS DALYy METOIIB 3aXUCTy
MPOrpaMHOro 3a0e3NedeHHs BiJl aKTUBHUX arak Ta ¢anbcudikarii. Jjis KoXKHOro iCHYIUOro THILy aTaku BKa3aHi HEoOXiaHi
3axoau 3axucry. KpiM Toro, posrisHyTi KiJibka CydaCHMX METOXIB 3aXHCTY, SIKI MOXKHa BHKOPHUCTOBYBATH B IPOIPAMHOMY
3a0e3IeueHHI [UIs 3aXUCTY BiJ aTak aHami3y i 3noMy nporpamu. [IpoaHainizoBaHO Taki METOAM: KIIi€HT-CEpPBEpPHI pillleHHS,
g pyBaHHs KOAY, pO3HECEHHs Koxy, o0¢yckamis koxy, kpunrorpadis White-Box, nporpamue 3abe3nedeHHs Juis 3aXUCTY Bif
HECAHKIIOHOBAaHOI'0 JIOCTYILY, 3aXUCT IIPOrPaMHOr0 3a0e3MeUeHHs, 3aIMIIKOBE XEIIyBaHHSA. Xoda BCl LI METOIM PO3IIISAHYTI
OKpEeMO, MOXHa 00'eJHATH TX 11 CHIJIBHOTO BUKOPUCTAHHS ISl HPOIPaMHOT0 3a0e3Ne4eHHs Oe3IeKH.

Kaw4goBi caoBa: Meroau 3axXUCTy NPpOrpaMHOro 336C3HC‘ICHHH, THII aTak, 3arpo3u NporpaMHOMY 3a0€3MeUeHHIO.

59

