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MULTIPLICATIVE APPROXIMATION METHOD
OF FUNCTIONAL DEPENDENCIES BY LINE SEGMENTS

Abstract. The article is devoted to the approximation problems of functional dependencies during conversions
performed in intelligent measurement devices. Non-linearities are essential parts of most control processes and
systems. When using a nonlinear transmitter with a conversion function in measurement information systems used
in various fields, it is necessary to perform nonlinear functional conversion operations on numbers in
microprocessors/microcontrollers during direct and indirect measurements. For this purpose, various approximation
methods are used. The purpose of the approximation is to describe nonlinear functions in a simpler, more convenient
way for utilization and calculations, with an insignificantly small loss of accuracy. Existent methods for
linearization, although some of them are effective, can be burdensome for implementation in microprocessor-based
systems. Here, one of the proposed methods for the approximation of nonlinear functional dependencies by line
segments is proposed. In this method, the range of the argument changes in the function is divided into line
segments, and the parts of the coordinate system bisector, remaining within the line segments of the function, is
swapped to perform approximation. Having involved few simple mathematical operations, the proposed method can
be implemented efficiently in microprocessors/microcontrollers to perform approximations in measurement

systems.
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Introduction

In modern times, the development of measurement
techniques is aimed at increasing their functional
capabilities, improving metrological characteristics, and
performing some intelligent functions that require mental
activity.

Problem statement. When designing any
measurement device, first of all, attention is paid to the
requirements for its metrological characteristics.

Such metrological characteristics contain:
accuracy,
sensitivity,
rigidity,
obstacle resistance,
dynamic range,

o reliability, etc.

In addition, in many cases, high requirements are
expected for the linearity of the conversion
characteristics (function) of measurement devices
intended for use in information and measurement
systems.

This is explained by the fact that the nonlinearity of
the conversion characteristics of measurement devices is
a cause of additional problems:

e presence of additional errors during the
subsequent  linear  conversion of the
measurement information;

e complexity of data processing algorithm;

e the complexity of presenting the input quantity
value in its own measurement unit, etc.

On the other hand, since it is considered more
relevant to present the measurement results in the unit of
the input quantity, the measurement device must also
perform the scaling operation.

In many practical cases, the conversion
characteristics of measurement devices are nonlinear.
There can be several reasons for this:

e nonlinearities due to the physical principles
underlying the construction of measurement
devices;

e non-linearity owing to imperfection in the
design or technology of measurement device
manufacturing process;

e nonlinearities depending on the nature of the
measurement methods;

e nonlinearities arising from the aggregation of
several of these reasons.

Nonlinearity of the transformation characteristic
of a measurement device means its deviation from the
linear characteristic of the real transformation
characteristic.

In the direction of the effective organization of the
measurement process and the implementation of some
issues that need to be addressed by the program on the
structure and programs developed by humans, as a result,
led to the emergence of intelligent measurement methods
and devices.

Purpose. The aim of the work is to formulate a
method through which a linearization process can be
implemented with high accuracy and less computational
power to enable it suitable in microprocessor/
microcontroller applications.

Analysis of recent research
and publications

Intelligent measurement devices are measuring
devices in which hardware and software components
operate together.

A large number of studies on the transformation
process have been carried out in the past, including:

o near-optimal nonlinear regression [1],

e nonlinearly Preconditioned FETI Solver for

Substructured Formulation [2],
e using piecewise linear functions [3-7].

Piecewise approximation techniques have a
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significant role in many fields of engineering and
mathematics [8-10].

Linear programming techniques are also used in
optimization problems

In general, the main methods of linearization of the
conversion characteristics of measuring instruments are:

o - technological methods;

e - construction methods;

e - structural methods;

e - structural-algorithmic methods;

e - Algorithmic methods.

Technological methods include the preparation of
individual elements and junctions of measuring
instruments from special materials, stabilization of their
mode of operation and conditions, etc. is carried out with
technological limitations.

Construction methods are performed by making
appropriate changes in the design of the measuring
instrument or its constituent elements.

In this case, determining and implementing the
optimal design is not an easy task. On the other hand,
both methods require an individual approach to each
measurement tool.

In the modern era, when microprocessors and
microcontrollers are widespread and inexpensive, there
are more opportunities for structural, structural-
algorithmic and algorithmic methods.

When using structural methods, it is necessary to
include additional functional blocks in the structure of the
measuring instrument created to improve its metrological
characteristics, as well as to linearize the conversion
characteristics, and to organize the information
conversion channel accordingly. Examples of structural
methods are compensation methods.

In addition to the measures of the structural method
in the structural-algorithmic method, certain control,
calculation, etc. are also performed by the
microprocessor computing devices included in the
measuring instrument. algorithms are executed. This
method includes additional equation methods and
iteration methods.

Algorithmic methods do not involve the inclusion
of any additional functional block or element in the
structure of the measuring instrument and are based only
on the processing of information from the measuring
instrument by certain algorithms by a microprocessor
computing device within the system [11-20].

Of the linearization methods of the conversion
characteristics of measuring instruments, only
algorithmic linearization methods meet the following
modern requirements [19]:

e can be applied to linearization of various forms

of nonlinear characteristics;

o the effectiveness of the method does not depend
on the degree of deviation of the nonlinear
characteristics of the measuring instrument from
the linear characteristics;

e can be used for measuring a wide range of
electrical quantities, especially non-electrical
quantities;

e ensuring the accuracy of the given line with
minimal costs;

e no need to use high-precision sample
measurements of electrical and non-electrical
quantities;

e there is no need to separate the measured
guantities from their input in order to linearize
the conversion characteristics of the measuring
instruments;

e structure, principle of construction,
construction, production technology, etc. of
functional blocks operating in the system.

Solve the problem of linearization without
interference, using only algorithms for processing
measurement information in modern microprocessor
computing devices.

Approximation methods of functional dependencies
with corrective adjustments are based on the
methodology of solving problems of linearization and
correction of integral errors.

The range of the argument changes in the function
is divided into line segments, and the parts of the
coordinate system bisector, remaining within the line
segments of the function, is swapped to perform
approximation to f(x).

Multiplicative Linearization

Depending on the mathematical operations used to
perform the shifting, these methods are called:

o additive (A),

o multiplicative (M),

e combinatorial (K),

o additive-multiplicative (A-M)
approximation methods.

The article is devoted to the method of
multiplicative approximation.

In the multiplicative approximation method of
nonlinear functional dependencies, the function f(x) is
replaced by straight line segments approximating this
function graph by rotating the ordinates of the linear

y=X
coordinate system bisector parts with the correcting
coefficients.

Fig. 1 illustrates the i-th parts of the function ¢(x),
which approximates the nonlinear function f(x) by a
multiplicative method.

Here A; is a multiplicative coefficient that rotates
the i-th part of the bisector to the function f(x) and

i1 =&

are deviations of the functions ¢;(x) and f(x) on the
boundaries of x;_, and x;.

The function ¢;(x) that approximates the nonlinear
function f(x) in the i-th section ¢;(x) is expressed with
the following equation;

¢i(x) = M; - x; ()
if f(x)>x,thenM; > 1;
if (x) <x thenM; < 1.

The boundary values of these parts x; are defined
with the multiplicative coefficients M; within these parts,
and boundary deviation values ¢&; having constant values
and opposite signs.
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Fig. 1. Multiplicative approximation method by line segments

xp=x4[ fO) £e]l/[ fl)] F e (2
My=[fl—) +fGD] / (e +x)0 ()
g = £0.5- [MAx; — Af (x) |; (4)

where:
Af (x) = f(x) — f(xi1); Axg = x; — xi-4; (5)
f(x;—y)and f(x;) — i-th part lower and upper

boundaries f(x;) < 0 (upward convexity),

Itis obvious that the relative positioning of function
f(x) with the y=x, does not make changes in their
corresponding expressions. Analysis of equation (3)
shows

that if Af(xl) = Axi ) then & F 0.

Therefore, the following equation can be
constructed:
€ = iOS - [Ml. 'Axl-—Axl-) ]:

The main propery of this method is that, in the line
segments with the multiplicative coefficient of M; # 1,
linear characteristics is approximated to f(x).

However, in the line segments with the condition
of Af (x;) = M; - Ax;, the deviation could be zero,

&; = 0. Therefore, the error of this method does not exist
in line segments with Af(x;) = Ax;, but can receive
minimal values in line segments with Af (x;) # Ax;.

Fig. 2 illustrates realization of multiplicative
linearization method by line segments.

X I;OE{X} = ME' X
0 F—
N
Xi < xE[xi1:xi] ~| M
. - -~
1=1-m
Fig. 2. Realization scheme of multiplicative method with line segments
. current argument boundary value x and its inclusion
Conclusions

A method through which a linearization process can
be implemented with high accuracy and less
computational power to enable it suitable in
microprocessor/microcontroller applications is proposed.
In the method, the boundary values within dynamic range
of argument and constant multiplicative coefficent values
within these line segments are stored in memory. The

interval are defined to determine multiplicative
coefficient, after which is multiplied by argument x. As
a result, the value of ¢;(x) = M; - x is calculated within
line segments of argument.

To sum up, in the proposed method non-linear
functional dependencies are just approximated using line
segments few comparison and one multiplication
operations.
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MeToa MyJIbTHILTIKATHBHOI apoKcUMAaNii PyHKIiOHATbHUX 3a/1€sKHOCTel
Biapizkamu Jinii

XynasepnieBa Maxa66ar

AnoTanisi. CraTTs NpHUCBSYCHA 3aBAAHHAM aNpOoKCUManii GyHKIIOHATBPHUX 3aJI€)KHOCTEH MpPH NMEePETBOPEHHSX, IO
BHUKOHYIOTBCS B IHTEJIEKTYaIbHUX BUMIPIOBAILHUX NMPHUCTPOsX. HeniHIHHOCTI € HeBi'€MHOIO YaCTHHOIO OiIBIIOCTI IIPOLIECiB
Ta CHCTeM ympasiiHHA. [Ipy BUKOpHCTAaHHI HENIHIHOTO NepeTBoproBava 3 (YHKIIEIO NMEPETBOPEHHS y BHMIipPIOBAJIBHUX
iHbpopMalifHUX CHUCTeMax, LI0 3aCTOCOBYIOThCS B pi3HHX OOJIAaCTSX, HEOOXiAHO BHKOHYBAaTH oOmepauii HeliHiHHOTro
(YHKIIOHAIBHOTO TMEPETBOPEHHSI HajJ YHUCIAMH MIiKPOIPOLECOPiB/MIKPOKOHTPOJIEPIB MpH MPSIMHX 1 HEHpsSMHUX
BUMIpIOBaHHAX. {7 IBOTO BUKOPHCTOBYIOTHCS Pi3HI METOIM ampoKcuMmalii. Mera ampokcumanii mojsrae B TOMy, 00
OmHCaTH HeNiHIMHI QyHKIIi O1bII MPOCTUM, 3pYYHHM JJIS BUKOPUCTAHHS Ta PO3PaxXyHKIB CIOCOOOM i3 Mi3€pHO Malloio
BTpaTOI TOYHOCTI. [cHyIOWi MeToaM TiHeapu3allii, Xxo4a AesKi 3 HUX e(heKTHBHI, MOXKYTh OyTH OOTSHKIMBHMH TS peajtizamii
B MIKpONPOIECOpHUX cucTeMax. TyT MpPONMOHYEThCS OAMH i3 3aIpPONOHOBAHMX METOJIB ampoKCHMalii HeTiHIHHHX
(GYHKIIOHATBHHUX 3aJIC)KHOCTEH Bipi3kaMu MpsAMUX. Y I[bOMY METO/Ii Jiana30H 3MiHH apryMeHTY QyHKII1 po30UBa€ETHCS Ha
BIJIPI3KM TNPSIMHX, & YaCTUHH OiCEKTPHCH CHUCTEMH KOODPJAMHAT, W0 3JIMIIMINCA B MEXaxX BiAPI3KIB MpsSMHUX (GYHKMIT,
MEePECTaBIAIOTh MICISIMU Ui BUKOHAHHS ampokcuMarlii. 3ajisBIIM Kilbka MPOCTHX MaTeMaTHYHUX OINEpaiii,
3alpONOHOBAHUN METOJ MOXKe OyTH e(peKTHBHO peaii3oBaHMil y MiKpOIpolecopax/MiKpOKOHTpoIepax sl BUKOHAHHS
anpoOKCHMAaIliil y BUMipIOBaJIbHUX CHCTEMaX.

KnawouoBi cuaoBa: IniHeapu3salis, HENiHIHI CHCTEMH, METOIU ampoOKCUMaIlii, METOJ MYJIbTHUIUTIKATUBHOI
AnmpOKCUMAIii.
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